Improving CO2 adsorption with new amine-functionalized Y-type zeolite

Document Type : Original Article


1 Department of Chemistry, Kerman branch, Islamic Azad University, Kerman, Iran

2 Professor, Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran


In this work, a new synthesized Y-type zeolite with an Si/Al molar ratio of 2.5 (NaY) was modified with amines, in order to probe the influence of the modification of the adsorbent’s surface on CO2 adsorption. The three selected amines were diethanolamine, tetraethylenepentamine, and 2- methylaminoethanol. The surface nature of NaY was changed after amine modification, which causes a significant increase in the CO2 adsorption capacity. The CO2 adsorption capacity of the amine- modified NaY increased with temperature. The mechanism of CO2 adsorption on NaY is usually a physical interaction, but it seems that after amine modification, chemical mechanism is the dominant mechanism for the chemical interaction between CO2 and amine groups. The adsorbents were characterized by surface area and porosity analysis, X-ray diffraction, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and scanning electron microscopy. The CO2 adsorption capacity was measured by the volumetric method at 298 and 348 K. The CO2 adsorption capacity of TEPA-NaY, DEA-NaY, and 2-MAE-NaY at 298 K was 60.63. The CO2 adsorption capacity of TEPA- NaY, DEA-NaY, and 2-MAE-NaY at 348 K were 92.9, 78, and 85.42, respectively. These results showed that amine-functionalized NaY zeolites have excellent adsorption potential for CO2 adsorption at high temperatures.


1.     Chatti R, Bansiwal AK, Thote JA, Kumar V, Jadhav P, Lokhande SK, et al. Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous and Mesoporous Materials. 2009;121(1):84-9.
2.     Chew T-L, Ahmad AL, Bhatia S. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Advances in colloid and interface science. 2010;153(1):43-57.
3.     Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Industrial & engineering chemistry research. 1999;38(10):3917-24.
4.     Su F, Lu C, Cnen W, Bai H, Hwang JF. Capture of CO2 from flue gas via multiwalled carbon nanotubes. Science of the total environment. 2009;407(8):3017-23.
5.     Yue MB, Sun LB, Cao Y, Wang Y, Wang ZJ, Zhu JH. Efficient CO2 Capturer Derived from As‐Synthesized MCM‐41 Modified with Amine. Chemistry-A European Journal. 2008;14(11):3442-51.
6.     Demessence A, D’Alessandro DM, Foo ML, Long JR. Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine. Journal of the American Chemical Society. 2009;131(25):8784-6.
7.     Wang K, Shang H, Li L, Yan X, Yan Z, Liu C, et al. Efficient CO2 capture on low-cost silica gel modified by polyethyleneimine. Journal of Natural Gas Chemistry. 2012;21(3):319-23.
8.     Tan LS, Lau KK, Bustam MA, Shariff AM. Removal of high concentration CO2 from natural gas at elevated pressure via absorption process in packed column. Journal of Natural Gas Chemistry. 2012;21(1):7-10.
9.     Cheng J, Li Y, Hu L, Zhou J, Cen K. CO2 Adsorption Performance of Ionic Liquid [P66614][2-Op] Loaded onto Molecular Sieve MCM-41 Compared to Pure Ionic Liquid in Biohythane/Pure CO2 Atmospheres. Energy & Fuels. 2016;30(4):3251-56.
10.   Alcañiz-Monge J, Marco-Lozar JP, Lillo-Ródenas MÁ. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Processing Technology. 2011;92(5):915-9.
11.   Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, et al. Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Industrial & engineering chemistry research. 1998;37(1):185-91.
12.   Mercedes Maroto-Valer M, Lu Z, Zhang Y, Tang Z. Sorbents for CO2 capture from high carbon fly ashes. Waste Management. 2008;28(11):2320-8.
13.   Lu C, Bai H, Wu B, Su F, Hwang JF. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy & Fuels. 2008;22(5):3050-6.
14.   Hsu S-C, Lu C, Su F, Zeng W, Chen W. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science. 2010;65(4):1354-61.
15.   Satyapal S, Filburn T, Trela J, Strange J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy & Fuels. 2001;15(2):250-5.
16.   Gray M, Hoffman J, Hreha D, Fauth D, Hedges S, Champagne K, et al. Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy & Fuels. 2009;23(10):4840-4.
17.   Pham TD, Hudson MR, Brown CM, Lobo RF. On the Structure–Property Relationships of Cation-Exchanged ZK-5 Zeolites for CO2 Adsorption. ChemSusChem. 2017;10(5):946-57.
18.   Anbia M, Mohammadi Nejati F, Jahangiri M, Eskandari A,Garshasbi V. Optimization of Synthesis Procedure for NaX Zeolite by Taguchi Experimental Design and its Application in CO2 Adsorption. Sciences, Islamic Republic of Iran. 2015;26(3):213-22.
19.   Lee YR, Hong SH, Seung Ahn W. Extrapolation of the Clausius-Clapeyron plot for estimating the CO2 adsorption capacities of zeolites at moderate temperature conditions. Korean Journal of Chemical Engineering. 2017;34(1):37-40.
20.   Wang L, Ma L, Wang A, Liu Q, Zhang T. CO2 Adsorption on SBA-15 Modified by Aminosilane. Chinese Journal of Catalysis. 2007;28(9):805-10.
21.   Arstad B, Fjellvåg H, Kongshaug K, Swang O, Blom R. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption. 2008;14(6):755-62.
22.   Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, et al. Ultrahigh porosity in metal-organic frameworks. Science. 2010;329(5990):424-8.
23.   Yazaydın AOzr, Snurr RQ, Park T-H, Koh K, Liu J, LeVan MD, et al. Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. Journal of the American Chemical Society. 2009;131(51):18198-9.
24.   Yazaydın AOzr, Benin AI, Faheem SA, Jakubczak P, Low JJ, Willis RR, et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chemistry of Materials. 2009;21(8):1425-30.
25.   Anbia M, Hoseini V. Enhancement of CO2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification. Journal of Natural Gas Chemistry. 2012;21(3):339-43.
26.   Hutson ND, Speakman SA, Payzant EA. Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of materials. 2004;16(21):4135-43.
27.   Zeleňák V, Badaničová M, Halamova D, Čejka J, Zukal A, Murafa N, et al. Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chemical Engineering Journal. 2008;144(2):336-42.
28.   Yan X, Zhang L, Zhang Y, Qiao K, Yan Z, Komarneni S. Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal. 2011;168(2):918-24.
29.   Kim S, Ida J, Guliants VV, Lin Y. Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO2. J. Phys. Chem. B. 2005; 109 (13):6287-93.
30.   Anbia M, Hoseini V, Mandegarzad S. Synthesis and characterization of nanocomposite MCM-48-PEHA-DEA and its application as CO2 adsorbent. Korean Journal of Chemical Engineering. 2012;29(12):1776-81.
31.   Hernandez-Maldonado AJ, Yang RT, Chinn D, Munson CL. Partially calcined gismondine type silicoaluminophosphate SAPO-43: isopropylamine elimination and separation of carbon dioxide, hydrogen sulfide, and water.Langmuir, 2003, 19(6): 2193-
32.   Harlick PJE, Tezel FH. Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Separation and purification technology, 2003, 33(2): 199-210.