Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus

Document Type : Original Article


Department of Fisheries, School of Natural Resources, University of Kurdistan, Sanandaj, Iran


Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate short term toxicity of a well characterized nTiO2 suspension. According to the results, acute exposure of D. magna and P. maeoticus to nTiO2 concentrations ranging from 0.1 to 200 mg/l did not cause any mortality; therefore, lethal concentrations could not be calculated (LC > 200 mg/l). Observations showed that the TiO2 nanoparticles were trapped on the surface of the body, under the carapace, and in the gut of the D. magna. Although the results of the present acute toxicity experiment did not show nTiO2 to be toxic to the tested aquatic organisms in an environmentally relevant concentration, further studies are needed on the chronic effects of lower concentrations of this nanomaterial in simulated natural ecosystems. 


  1. Wilson Database. Consumer Products Inventory: An inventory of nanotechnology-based consumer products introduced on the market [Online]. [cited 2015]; Available from: URL:
  3. Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research 2011; 13(2): 427-45.
  4. Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research 2013; 15: 1692.
  5. Parkin IP, Palgrave RG. Self-cleaning coatings. J Mater Chem 2005; 15: 1689-95.
  6. Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA. Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2000; 130(2-3): 163-70.
  7. Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008; 42(12): 4447-53.
  8. O'Brien N, Cummins E. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J Environ Sci Health A Tox Hazard Subst Environ Eng 2010; 45(8): 992-1007.
  9. OECD. OECD Guidelines for the Testing of Chemicals OECD Guidelines for the Testing of Chemicals Fifteenth Addendum No: 202. Paris, France: OECD Publishing; 2004.
  10. Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008; 17(5): 387-95.
  11. Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, et al. Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 2008; 27(9): 1932-41.
  12. Bundschuh M, Zubrod JP, Englert D, Seitz F, Rosenfeldt RR, Schulz R. Effects of nano-TiO(2) in combination with ambient UV-irradiation on a leaf shredding amphipod. Chemosphere 2011; 85(10): 1563-7.
  13. Mwangi JN, Wang N, Ritts A, Kunz JL, Ingersoll CG, Li H, et al. Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures. Environ Toxicol Chem 2011; 30(4): 981-7.
  14. Fabrega J, Tantra R, Amer A, Stolpe B, Tomkins J, Fry T, et al. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. Environ Sci Technol 2012; 46(2): 1128-35.
  15. Jackson BP, Bugge D, Ranville JF, Chen CY. Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus. Environ Sci Technol 2012; 46(10): 5550-6.
  16. Hanna SK, Miller RJ, Zhou D, Keller AA, Lenihan HS. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Aquat Toxicol 2013; 142-143: 441-6.
  17. Poynton HC, Lazorchak JM, Impellitteri CA, Blalock B, Smith ME, Struewing K, et al. Toxicity and transcriptomic analysis in Hyalella azteca suggests increased exposure and susceptibility of epibenthic organisms to zinc oxide nanoparticles. Environ Sci Technol 2013; 47(16): 9453-60.
  18. Kalcikova G, Englert D, Rosenfeldt RR, Seitz F, Schulz R, Bundschuh M. Combined effect of UV-irradiation and TiO(2)-nanoparticles on the predator-prey interaction of gammarids and mayfly nymphs. Environ Pollut 2014; 186: 136-40.
  19. Li S, Wallis LK, Ma H, Diamond SA. Phototoxicity of TiO(2) nanoparticles to a freshwater benthic amphipod: are benthic systems at risk? Sci Total Environ 2014; 466-467: 800-8.
  20. Li S, Wallis LK, Diamond SA, Ma H, Hoff DJ. Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO(2) nanoparticles to benthic organisms. Environ Toxicol Chem 2014; 33(7): 1563-9.
  21. Park S, Woodhall J, Ma G, Veinot JG, Cresser MS, Boxall AB. Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment? Nanotoxicology 2014; 8(5): 583-92.
  22. Barnard JL, Barnard CM. Freshwater Amphipoda of the World: Handbook and bibliography, Volume 2. Vernon, VA: Hayfield Associates; 1983.
  23. Mirzajania AR. A study on the population biology of Pontogammarus maeoticus (Sowinsky, 1894) in Bandar Anzali, southwest Caspian Sea. Zoology in the Middle East 2003; 30(1): 61-8.
  24. OECD. OECD Guidelines for the Testing of Chemicals / Section 2: Effects on Biotic Systems Test No. 211: Daphnia magna Reproduction Test. Paris, France: OECD Publishing; 2008.
  25. Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 2006; 25(4): 1132-7.
  26. Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 2007; 84(4): 415-30.
  27. Directive 1999/45/EC. General classification and labeling requirements for dangerous substances and preparations (Annex VI) [Online]. [cited 1999]; Available from: URL:
  29. EUR-Lex. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 [Online]. [cited 2008 Dec 12]; Available from: URL:
  30. UNECE. Globally Harmonized System of Classification and Labelling of Chemicals (GHS, Rev.4). New York, NY: United Nations; 2011.
  31. Garcia A, Espinosa R, Delgado L, Casals E, Gonzalez E, Puntes V, et al. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 2011; 269(1-3): 136-41.
  32. Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, et al. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 2009; 76(10): 1356-65.
  33. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, et al. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology 2012; 10: 14.
  34. Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010; 78(3): 209-15.
  35. Zhu X, Zhu L, Chen Y, Tian S. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. Journal of Nanoparticle Research 2008; 11(1): 67-75.
  36. Strigul N, Vaccari L, Galdun C, Wazne M, Liu X, Christodoulatos C, et al. Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination 2009; 248(1-3): 771-82.
  37. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 2007; 171(3): 99-110.