Removal of COD and TOC From Petroleum Synthetic Wastewater Containing Cyclic Aromatic Hydrocarbons Using the Photo-Fenton Process by the Box-Behnken Method

Document Type : Original Article


1 Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

3 Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4 Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran



Background: In the last few decades, concern over environmental safety has increased significantly. One of the main causes of environmental degradation is the discharge of untreated pollutants into water bodies. This study examined the efficiency of the photo-Fenton oxidation process to remove chemical oxygen demand (COD) and total organic carbon (TOC) from petroleum wastewater.
Methods: Experiments were designed using the Box-Behnken method- a model of the response surface method (RSM) by MINITAB software. First, a wooden chamber equipped with UV lamps installed in the center was applied. The effect of effective parameters on the photo-Fenton process, including naphthalene concentration (10-70 μg/L), pH (2-7), H2O2 (50-800 mg/L), Fe (5-80 mg/L), contact time (10-120 minutes) and UV rays was investigated.
Results: The highest removal efficiency of the COD (case 89.27) was at achieved at pH = 2, UV = 24, naphthalene concentration 10 μg/L, Fe concentration 36.06 mg/L, hydrogen peroxide content 800 mg/L, and contact time 120 min. Besides, the highest removal efficiency of the process in removing TOC was 71.04% obtained at 2 pH = 24, UV = 24, and a reaction time of 120 min.
Conclusion: Based on the results of this research, the photo-Fenton process has a significant efficiency in removing COD and TOC from petroleum effluents containing cyclic aromatic hydrocarbons and can be utilized as an efficient method for the treatment of petroleum wastewaters.


Main Subjects

  1. Evans AE, Mateo-Sagasta J, Qadir M, Boelee E, Ippolito A. Agricultural water pollution: key knowledge gaps and research needs. Curr Opin Environ Sustain. 2019;36:20-7. doi: 1016/j.cosust.2018.10.003.
  2. Rezaei H, Motallebi R, Hedayati SAA, Kord Rostami A. Evaluation of nano chitosan efficiency in removal of benzene from aqueous solutions. J Water Soil Conserv. 2019;26(4):255-67. doi: 22069/jwsc.2019.16203.3150. [Persian].
  3. Wei X, Zhang S, Han Y, Wolfe FA. Treatment of petrochemical wastewater and produced water from oil and gas. Water Environ Res. 2019;91(10):1025-33. doi: 1002/wer.1172.
  4. Adetunji AI, Olaniran AO. Production and potential biotechnological applications of microbial surfactants: an overview. Saudi J Biol Sci. 2021;28(1):669-79. doi: 1016/j.sjbs.2020.10.058.
  5. Mohammadi L, Rahdar A, Bazrafshan E, Dahmardeh H, Susan MA, Kyzas GZ. Petroleum hydrocarbon removal from wastewaters: a review. Processes. 2020;8(4):447. doi: 3390/pr8040447.
  6. Zainab SM, Junaid M, Xu N, Malik RN. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020;187:116455. doi: 1016/j.watres.2020.116455.
  7. Chowdhary P, Bharagava RN, Mishra S, Khan N. Role of industries in water scarcity and its adverse effects on environment and human health. In: Shukla V, Kumar N, eds. Environmental Concerns and Sustainable Development. Singapore: Springer; 2020. p. 235-56. doi: 1007/978-981-13-5889-0_12.
  8. Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017;188:280-91. doi: 1016/j.chemosphere.2017.09.005.
  9. Mirzaee E, Gitipour S, Mousavi M, Amini S. Optimization of total petroleum hydrocarbons removal from Mahshahr contaminated soil using magnetite nanoparticle catalyzed Fenton-like oxidation. Environ Earth Sci. 2017;76(4):165. doi: 1007/s12665-017-6484-1.
  10. Kuyukina MS, Krivoruchko AV, Ivshina IB. Advanced bioreactor treatments of hydrocarbon-containing wastewater. Appl Sci. 2020;10(3):831. doi: 3390/app10030831.
  11. Aljuboury DA, Palaniandy P, Abdul Aziz HB, Feroz SA. Treatment of petroleum wastewater by conventional and new technologies-a review. Glob Nest J. 2017;19(3):439-52. doi: 30955/gnj.002239.
  12. Rupini B. Unit-3 Environmental Pollutants and Pollution: Air, Water and Soil. New Delhi: Indira Gandhi National Open University (IGNOU); 2018. p. 46-74.
  13. Ranc B, Faure P, Croze V, Simonnot MO. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2016;312:280-97. doi: 1016/j.jhazmat.2016.03.068.
  14. Han M, Zhang J, Chu W, Chen J, Zhou G. Research progress and prospects of marine oily wastewater treatment: a review. Water. 2019;11(12):2517. doi: 3390/w11122517.
  15. Mikhak Y, Mohammad Alizadeh Torabi M, Fouladitajar A. Refinery and petrochemical wastewater treatment. In: Galanakis CM, Agrafioti E, eds. Sustainable Water and Wastewater Processing. Elsevier; 2019. p. 55-91. doi: 1016/b978-0-12-816170-8.00003-x.
  16. Giménez BN, Conte LO, Alfano OM, Schenone AV. Paracetamol removal by photo-Fenton processes at near-neutral pH using a solar simulator: optimization by D-optimal experimental design and toxicity evaluation. J Photochem Photobiol A Chem. 2020;397:112584. doi: 1016/j.jphotochem.2020.112584.
  17. Bello MM, Abdul Raman AA. Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. Environ Chem Lett. 2019;17(2):1125-42. doi: 1007/s10311-018-00842-0.
  18. Sathasivam M, Shanmugapriya S, Yogeshwaran V, Priya AK. Industrial waste water treatment using advanced oxidation process–a review. Int J Eng Adv Technol. 2019;8(3):485-8.
  19. Sonu, Dutta V, Sharma S, Raizada P, Hosseini-Bandegharaei A, Gupta VK, et al. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J Saudi Chem Soc. 2019;23(8):1119-36. doi: 1016/j.jscs.2019.07.003.
  20. Ortiz I, Rivero MJ, Margallo M. Advanced oxidative and catalytic processes. In: Galanakis CM, Agrafioti E, eds. Sustainable Water and Wastewater Processing. Elsevier; 2019. p. 161-201. doi: 1016/b978-0-12-816170-8.00006-5.
  21. Toor UA, Duong TT, Ko SY, Hussain F, Oh SE. Optimization of Fenton process for removing TOC and color from swine wastewater using response surface method (RSM). J Environ Manage. 2021;279:111625. doi: 1016/j.jenvman.2020.111625.
  22. Cao J, Yang J, Yue K, Wang Z. Preparation of modified citrus pectin (MCP) using an advanced oxidation process with hydroxyl radicals generated by UV-H2O2. Food Hydrocoll. 2020;102:105587. doi: 1016/j.foodhyd.2019.105587.
  23. Guo Y, Xue Q, Zhang H, Wang N, Chang S, Wang H, et al. Treatment of real benzene dye intermediates wastewater by the Fenton method: characteristics and multi-response optimization. RSC Adv. 2018;8(1):80-90. doi: 1039/c7ra09404c.
  24. Zhang MH, Dong H, Zhao L, Wang DX, Meng D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ. 2019;670:110-21. doi: 1016/j.scitotenv.2019.03.180.
  25. Elmobarak WF, Hameed BH, Almomani F, Abdullah AZ. A review on the treatment of petroleum refinery wastewater using advanced oxidation processes. Catalysts. 2021;11(7):782. doi: 3390/catal11070782.
  26. Zanton GI. Effect of experimental design on responses to 2 concentrations of metabolizable protein in multiparous dairy cows. J Dairy Sci. 2019;102(6):5094-108. doi: 3168/jds.2018-15730.
  27. Thant Zin MM, Kim DJ. Struvite production from food processing wastewater and incinerated sewage sludge ash as an alternative N and P source: optimization of multiple resources recovery by response surface methodology. Process Saf Environ Prot. 2019;126:242-9. doi: 1016/j.psep.2019.04.018.
  28. Micó MM, Bacardit J, Malfeito J, Sans C. Enhancement of pesticide photo-Fenton oxidation at high salinities. Appl Catal B Environ. 2013;132-133:162-9. doi: 1016/j.apcatb.2012.11.016.
  29. Sohrabi MR, Khavaran A, Shariati S, Shariati S. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arab J Chem. 2017;10(Suppl 2):S3523-S31. doi: 1016/j.arabjc.2014.02.019.
  30. Zhang H, Zhang Y, Zhang D. Decolorisation and mineralisation of CI Reactive Black 8 by the Fenton and ultrasound/Fenton methods. Color Technol. 2007;123(2):101-5. doi: 1111/j.1478-4408.2007.00069.x.
  31. Mokhbi Y, Korichi M, Akchiche Z. Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Appl Water Sci. 2019;9(2):35. doi: 1007/s13201-019-0916-x.
  32. Karimi B, Rajaei M, Eesvand M, Habibi M. Application of UV/TiO2/H2O2 advanced oxidation to remove naphthalene from water. J Water Wastewater. 2016;27(5):53-63. [Persian].
  33. Ku Y, Tu YH, Ma CM. Effect of hydrogen peroxide on the decomposition of monochlorophenols by sonolysis in aqueous solution. Water Res. 2005;39(6):1093-8. doi: 1016/j.watres.2004.11.036.
  34. El Haddad M, Regti A, Laamari MR, Mamouni R, Saffaj N. Use of Fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. J Mater Environ Sci. 2014;5(3):667-74.
  35. Torrades F, García-Montaño J. Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions. Dyes Pigm. 2014;100:184-9. doi: 1016/j.dyepig.2013.09.004.
  36. Karimi S, Shokri A, Aghel B. Remediation of spent caustic in the wastewater of oil refinery by photo-Fenton process. Arch Hyg Sci. 2020;9(3):179-88. doi: 29252/ArchHygSci.9.3.179.
  37. Tony MA, Purcell PJ, Zhao Y. Oil refinery wastewater treatment using physicochemical, Fenton and photo-Fenton oxidation processes. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(3):435-40. doi: 1080/10934529.2012.646136.
  38. Yao H, Sun P, Minakata D, Crittenden JC, Huang CH. Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H2O2. Environ Sci Technol. 2013;47(9):4581-9. doi: 1021/es3052685.
  39. Safa S, Mehrasbi MR. Investigating the photo-Fenton process for treating soil washing wastewater. J Environ Health Sci Eng. 2019;17(2):779-87. doi: 1007/s40201-019-00394-7.
  40. Mohadesi M, Aghel B, Razmegir MH. COD reduction in petrochemical wastewater using the solar photo-Fenton process. J Chem Pet Eng. 2021;55(1):69-81. doi: 22059/jchpe.2020.310442.1330.