Phenotypic Characterization and Plasmid DNA Profiling of Multidrug-Resistant Escherichia coli and Staphylococcus aureus in Wastewater Effluents From Healthcare Environments in Lafia, Nigeria

Document Type : Original Article


1 Department of Microbiology, Federal University of Lafia, Lafia, Nigeria

2 Department of Microbiology, Federal School of Laboratory Science, Jos, Nigeria

3 Department of Microbiology, Dalhatu Araf Specialist Hospital, Lafia, Nigeria

4 Department of Microbiology, Cross River University of Technology, Calabar, Nigeria



Background: Multidrug-resistant Escherichia coli and Staphylococcus aureus are frequent culprits of severe healthcare-associated infections and have been identified as significant pollutants in hospital settings. The research into plasmids as potential carriers for transferring new resistance genes among clinical pathogens has been quite constrained. This study was conducted to determine the extent of multidrug resistance and the presence of plasmids in E. coli and S. aureus isolates derived from wastewater effluents at healthcare institutions in Lafia, Nigeria.
Methods: A total of 231 effluent samples were collected from different units within the healthcare facilities and bacterial identification performed using standard CLSI identification techniques. Phenotypic multidrug resistance was analyzed using the Kirby-Bauer disc diffusion method while plasmid DNA was extracted by alkaline lysis and separated using 0.8% agarose gel electrophoresis.
Results: A total of 167 (72.3%) and 175 (75.6%) samples were positive for E. coli and S. aureus, respectively. Both E. coli and S. aureus exhibited the greatest resistance to amoxicillin, with resistance rates of 79.0% and 66.3%, respectively. Conversely, the lowest resistance was observed for levofloxacin (26.3%) and cotrimoxazole (25.1%) in E. coli and S. aureus, respectively. The study did not find any significant correlation between the phenotypic antibiotic resistance profiles of the isolates and different wastewater discharge points (P > 0.05). Out of the total isolates, 77 (46.1%) of E. coli and 51 (29.1%) of S. aureus were resistant to all tested antibiotics. A majority of these isolates exhibited multiple antibiotic resistance index (MARI) values greater than 0.5, with 87.4% of E. coli and 80.6% of S. aureus demonstrating multidrug resistance. Plasmid analysis for E. coli indicated that the largest proportion of the selected isolates (46.7%) carried double plasmids with sizes ranging from 1500 to 6000 base pairs (bp), and 6.7% had no plasmids. In the case of S. aureus, 53.3% of the isolates harbored a single plasmid with a size of 7500 bp, while 46.7% had no plasmids.
Conclusion: The wastewater discharged from healthcare facilities in the examined community was found to be significantly contaminated with multidrug-resistant organisms carrying plasmids with resistance genes.


Main Subjects

  1. Nuñez L, Moretton J. Disinfectant-resistant bacteria in Buenos Aires city hospital wastewater. Braz J Microbiol. 2007;38(4):644-8. doi: 1590/s1517-83822007000400012.
  2. Hashimu DA, Nfongeh JF, Orole OO. Antibiogram of microbial pathogens isolated from drugs sold within Lafia Metropolis, Nasarawa State, Nigeria. GSC Biol Pharm Sci. 2020;12(2):167-73. doi: 30574/gscbps.2020.12.2.0249.
  3. Fuh NJ, Christiana OM, Uteh UP, Dantani OD, Pedro A, Kolawole FV, et al. Comparative Isolation of Escherichia coli 0157:H7 from diarrhoeic and non-diarrhoeic children in selected communities in Cross River State, Nigeria. Adv Biosci Bioeng (N Y). 2018;6(2):23-9. doi: 11648/
  4. Akubuenyi FC, Arikpo GE, Ogugbue CJ, Mfongeh JF, Akpanumun EV. Antibiotic resistance profile of wastewater isolates obtained from University of Calabar teaching hospital and general hospital Calabar, Nigeria. Niger J Microbiol. 2011;25:2243-50.
  5. Uzoije UN, Moses IB, Nwakaeze EA, Uzoeto HO, Otu JO, Egbuna NR, et al. Prevalence of multidrug-resistant bacteria isolates in waste water from different hospital environment in Umuahia, Nigeria. Int J Pharm Sci Rev Res. 2021;69(2):25-32. doi: 47583/ijpsrr.2021.v69i02.003.
  6. Ugwu MC, Anie CO, Ibezim EC, Esimone CO. Antimicrobial evaluation of methicillin-resistant Staphylococcus aureus nasal carriage amongst healthy students in Agbor, Delta State, Nigeria. Arch Clin Microbiol. 2016;7(2):1-4.
  7. Somwang D, Wilhia W, Susan A, Duangporn J. Prevalence and risk factors of healthcare-associated infections. J Med Assoc Thail. 2005;88:59-64.
  8. Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004;12(9):412-6. doi: 1016/j.tim.2004.07.004.
  9. Pauwels B, Verstraete W. The treatment of hospital wastewater: an appraisal. J Water Health. 2006;4(4):405-16.
  10. Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater. 2010;179(1-3):1042-8. doi: 1016/j.jhazmat.2010.03.110.
  11. Verlicchi P, Al Aukidy M, Zambello E. What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Sci Total Environ. 2015;514:467-91. doi: 1016/j.scitotenv.2015.02.020.
  12. Chu BTT, Petrovich ML, Chaudhary A, Wright D, Murphy B, Wells G, et al. Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Appl Environ Microbiol. 2018;84(5):e02168-17. doi: 1128/aem.02168-17.
  13. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8(4):251-9. doi: 1038/nrmicro2312.
  14. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345-60. doi: 1016/j.scitotenv.2013.01.032.
  15. Cheesbrough M. District Laboratory Practice in Tropical Countries: Part 1: Microbiology. 2nd ed. Cambridge University Press; 2006. p. 158-95
  16. Gosden PE, Andrews JM, Bowker KE, Holt HA, MacGowan AP, Reeves DS, et al. Comparison of the modified Stokes’ method of susceptibility testing with results obtained using MIC methods and British Society of Antimicrobial Chemotherapy breakpoints. J Antimicrob Chemother. 1998;42(2):161-9. doi: 1093/jac/42.2.161.
  17. Clinical & Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. M7-A10. 18. Document M 100-S21. CLSI; 2011.
  18. Akya A, Chegenelorestani R, Shahvaisi-Zadeh J, Bozorgomid A. Antimicrobial resistance of Staphylococcus aureus isolated from hospital wastewater in Kermanshah, Iran. Risk Manag Healthc Policy. 2020;13:1035-42. doi: 2147/rmhp.s261311.
  19. Opere BO, Ojo JO, Omonigbehin E, Bamidele M. Antibiotic susceptibility and plasmid profile analysis of pathogenic bacteria isolated from environmental surfaces in public toilets. Transnational Journal of Science and Technology. 2013;3(2):22-30.
  20. Coban AY, Tanrıverdi Çaycı Y, Yıldırım T, Erturan Z, Durupınar B, Bozdoğan B. [Investigation of plasmid-mediated quinolone resistance in Pseudomonas aeruginosa strains isolated from cystic fibrosis patients]. Mikrobiyol Bul. 2011;45(4):602-8. [Turkish].
  21. Gaşpar CM, Cziszter LT, Lăzărescu CF, Ţibru I, Pentea M, Butnariu M. Antibiotic resistance among Escherichia coli isolates from hospital wastewater compared to community wastewater. Water. 2021;13(23):3449. doi: 3390/w13233449.
  22. Siddiqui MK, Khatoon N, Roy PC. Untreated liquid hospital waste: potential source of multidrug resistant bacteria. Bangladesh J Microbiol. 2015;32(1-2):21-4.
  23. Zagui GS, Tonani KA, Fregonesi BM, Machado GP, Silva TV, Andrade LN, et al. Tertiary hospital sewage as reservoir of bacteria expressing MDR phenotype in Brazil. Braz J Biol. 2021;82:e234471. doi: 1590/1519-6984.234471.
  24. Lihan S, Lee SY, Toh SC, Leong SS. Plasmid-mediated antibiotic resistant Escherichia coli in Sarawak Rivers and aquaculture farms, Northwest of Borneo. Antibiotics (Basel). 2021;10(7):776. doi: 3390/antibiotics10070776.
  25. Regasa Dadi B, Girma E, Tesfaye M, Seid M. Assessment of the bacteriological profile and antibiotic susceptibility patterns of wastewater in health facilities of Ethiopia. Int J Microbiol. 2021;2021:9969479. doi: 1155/2021/9969479.
  26. Odonkor ST, Addo KK. Prevalence of multidrug-resistant Escherichia coli isolated from drinking water sources. Int J Microbiol. 2018;2018:7204013. doi: 1155/2018/7204013.
  27. Moges F, Endris M, Belyhun Y, Worku W. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia. BMC Res Notes. 2014;7:215. doi: 1186/1756-0500-7-215.
  28. Olawale SI, Busayo OM, Olatunji OI, Mariam M, Olayinka OS. Plasmid profiles and antibiotic susceptibility patterns of bacteria isolated from abattoirs wastewater within Ilorin, Kwara, Nigeria. Iran J Microbiol. 2020;12(6):547-55. doi: 18502/ijm.v12i6.5029.
  29. Atuanya EI, Nwogu NA, Orah CU. Antibiotic resistance and plasmid profiles of bacteria isolated from abattoir effluents around Ikpoba River in Benin city, Nigeria. J Appl Sci Environ Manag. 2018;22(11):1749-55. doi: 4314/jasem.v22i11.7.
  30. Akter S, Chowdhury A, Mina SA. Antibiotic resistance and plasmid profiling of Escherichia coli isolated from human sewage samples. Microbiol Insights. 2021;14:11786361211016808. doi: 1177/11786361211016808.
  31. Jaran AS. Antimicrobial resistance patterns and plasmid profiles of Staphylococcus aureus isolated from different clinical specimens in Saudi Arabia. Eur Sci J. 2017;13(9):1-9. doi: 19044/esj.2017.v13n9p1.
  32. Zulkifli Y, Alitheen NB, Raha AR, Marlina, Yeap SK, Son R, et al. Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from cockles in Padang, Indonesia. Int Food Res J. 2009;16(1):53-8.
  33. Radu S, Elhadi N, Hassan Z, Rusul G, Lihan S, Fifadara N, et al. Characterization of Vibrio vulnificus isolated from cockles (Anadara granosa): antimicrobial resistance, plasmid profiles and random amplification of polymorphic DNA analysis. FEMS Microbiol Lett. 1998;165(1):139-43. doi: 1111/j.1574-6968.1998.tb13138.x.
  34. Goli HR, Nahaei MR, Ahangarzadeh Rezaee M, Hasani A, Samadi Kafil H, Aghazadeh M, et al. Prevalence and molecular characterization of class 1 integrons among clinical isolates of Pseudomonas aeruginosa in Northwest of Iran. Mol Gen Microbiol Virol. 2017;32(2):109-15. doi: 3103/S0891416817020057.
  35. Mobaraki S, Aghazadeh M, Soroush Barhaghi MH, Yousef Memar M, Goli HR, Gholizadeh P, et al. Prevalence of integrons 1, 2, 3 associated with antibiotic resistance in Pseudomonas aeruginosa isolates from Northwest of Iran. Biomedicine (Taipei). 2018;8(1):2. doi: 1051/bmdcn/2018080102.
  36. Quintela-Baluja M, Frigon D, Abouelnaga M, Jobling K, Romalde JL, Gomez Lopez M, et al. Dynamics of integron structures across a wastewater network - implications to resistance gene transfer. Water Res. 2021;206:117720. doi: 1016/j.watres.2021.117720.
  37. Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34-44. doi: 1139/cjm-2018-0275.