On the Total Load Calculation in Combined Urban Sewer Conduits

Document Type : Original Article


Department of Civil Engineering, School of Water and Hydraulic Structures Engineering, Urmia University, Urmia, Iran



Background: Particle size of sediment is necessary to design and operation of sewer systems. In this regard, calculation of the equivalent particle diameter (EPD) is of important to determine the particle Reynolds number (Ret) as well as total load calculation.
Methods: In this research work, 5 different particle diameters (i.e. d35, d50, d65, dm and deff) have been used in three famous total load calculation methods for calculating the best EPD. For this goal, a field experimental data has been collected at the entrance grit chamber of wastewater treatment plant (WWTP) of Khomein city, Iran. The total load of the sediments has been measured and the results compared with the total loads calculated by the three famous total load computation methods (i.e. Graf & Acaroglu method, Laursen method and Yang & Lim method) by using the particle diameters.
Results: The results show that the methods estimate the total load of sediments with the relative errors of 4.25, 10.80 and 1.26 by using dm, d35 and d65 as the EPDs, respectively. Also, a simplified and improved correction factor has been developed and the results show that by applying the correction factor the relative errors of the methods decrease and they are equal to 10.34, 3.45 and 496.5, respectively. The improvement of the mentioned total load methods is equal to are 82.70%, 93.10% and 34.80%, respectively.
Conclusion: The proposed correction factor can be applied for the standard deviation between 2.5-4.7 and the median particle diameter between 0.84-2.90 mm.


Main Subjects

  1. Ashley RM, Bertrand-Krajewski JL, Hvitved-Jacobsen T, Verbanck M. Solids in Sewers: Characteristics, Effects and Control of Sewer Solids and Associated Pollutants, Scientific and Technical. Report No. 14. London: IWA Publishing; 2004.
  2. Laplace D. Dynamique du dépôt en collecteur d’assainissement [dissertation]. Toulouse: National Polytechnic Institute of Toulouse; 1991. [Ference].
  3. Verbanck M. Field investigations on sediment occurrence and behaviour in Brussels combined sewers. Water Sci Technol. 1992;25(8):71-82. doi: 2166/wst.1992.0181.
  4. Bertrand-Krajewski JL, Bardin JP, Gibello C. Long term monitoring of sewer sediment accumulation and flushing experiments in a man-entry sewer. Water Sci Technol. 2006;54(6-7):109-17. doi: 2166/wst.2006.619.
  5. Campisano A, Creaco E, Modica C. Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits. J Hydrol. 2004;299(3-4):324-34. doi: 1016/j.jhydrol.2004.08.009.
  6. Creaco E, Bertrand-Krajewski J-L. Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas. J Hydraul Res. 2009;47(2):195-202. doi: 3826/jhr.2009.3363.
  7. Crabtree RW. Sediments in sewers. Water Environ J. 1989;3(6):569-78. doi: 1111/j.1747-6593.1989.tb01437.x.
  8. Verbanck M. Sewer sediment and its relation with the quality characteristics of combined sewer flows. Water Science and Technology. 1990;22(10-11):247-57. doi: 2166/wst.1990.0311.
  9. Chebbo G, Bachoc A. Characterization of suspended solids in urban wet weather discharges. Water Sci Technol. 1992;25(8):171-9. doi: 2166/wst.1992.0191.
  10. Ebtehaj I, Bonakdari H. Evaluation of sediment transport in sewer using artificial neural network. Eng Appl Comput Fluid Mech. 2013;7(3):382-92. doi: 1080/19942060.2013.11015479.
  11. KuĊ›nierz M, Wiercik P. Analysis of particle size and fractal dimensions of suspensions contained in raw sewage, treated sewage and activated sludge. Arch Environ Prot. 2016;42(3):67-76. doi: 1515/aep-2016-0031.
  12. Lepot M, Pouzol T, Aldea Borruel X, Suner D, Bertrand-Krajewski J-L. Measurement of sewer sediments with acoustic technology: from laboratory to field experiments. Urban Water J. 2017;14(4):369-77. doi: 1080/1573062x.2016.1148181.
  13. Wu B, Molinas A, Julien PY. Bed-material load computations for nonuniform sediments. J Hydraul Eng (N Y). 2004;130(10):1002-12. doi: 1061/(asce)0733-9429(2004)130:10(1002).
  14. Todeschini S, Ciaponi C, Papiri S. Laboratory experiments and numerical modelling of the scouring effects of flushing waves on sediment beds. Eng Appl Comput Fluid Mech. 2010;4(3):365-73. doi: 1080/19942060.2010.11015324.
  15. Tait SJ, Marion A, Camuffo G. Effect of environmental conditions on the erosional resistance of cohesive sediment deposits in sewers. Water Sci Technol. 2003;47(4):27-34. doi: 2166/wst.2003.0213.
  16. Banasiak R, Verhoeven R, De Sutter R, Tait S. The erosion behaviour of biologically active sewer sediment deposits: observations from a laboratory study. Water Res. 2005;39(20):5221-31. doi: 1016/j.watres.2005.10.011.
  17. Schellart A, Veldkamp R, Klootwijk M, Clemens F, Tait S, Ashley R, et al. Detailed observation and measurement of sewer sediment erosion under aerobic and anaerobic conditions. Water Sci Technol. 2005;52(3):137-46. doi: 2166/wst.2005.0070.
  18. Seco I, Gómez Valentín M, Schellart A, Tait S. Erosion resistance and behaviour of highly organic in-sewer sediment. Water Sci Technol. 2013;69(3):672-9. doi: 2166/wst.2013.761.
  19. Regueiro-Picallo M, Anta J, Suárez J, Puertas J, Jácome A, Naves J. Characterisation of sediments during transport of solids in circular sewer pipes. Water Sci Technol. 2018;2017(1):8-15. doi: 2166/wst.2018.055.
  20. Bertrand-Krajewski JL. Modelling of Sewer Solids Production and Transport,. Cours de DEA “Hydrologie Urbaine”. Lyon, France: Institut National des Sciences Appliquées de Lyon (INSA); 2006.
  21. Skipworth PJ, Tait SJ, Saul AJ. Erosion of sediment beds in sewers: model development. J Environ Eng. 1999;125(6):566-73. doi: 1061/(asce)0733-9372(1999)125:6(566).
  22. De Sutter R, Rushforth P, Tait S, Huygens M, Verhoeven R, Saul A. Validation of existing bed load transport formulas using in-sewer sediment. J Hydraul Eng (N Y). 2003;129(4):325-33. doi: 1061/(asce)0733-9429(2003)129:4(325).
  23. Rushforth PJ, Tait SJ, Saul AJ. Modeling the erosion of mixtures of organic and granular in-sewer sediments. J Hydraul Eng (N Y). 2003;129(4):308-15. doi: 1061/(asce)0733-9429(2003)129:4(308).
  24. Banasiak R, Verhoeven R. Transport of sand and partly cohesive sediments in a circular pipe run partially full. J Hydraul Eng (N Y). 2008;134(2):216-24. doi: 1061/(asce)0733-9429(2008)134:2(216).
  25. Rammal M, Chebbo G, Vazquez J, Joannis C. Do storm event samples bias the comparison between sewer deposits contribution? Water Sci Technol. 2016;75(2):271-80. doi: 2166/wst.2016.514.
  26. Richardson JF, Zaki WN. Sedimentation and fluidization: part 1. Trans Inst Chem Eng. 1954;32:35-53.
  27. Graf WH, Acaroglu ER. Sediment transport in conveyance systems, part 1. Bull Int Assoc Sci.Hydrol. 1968;13:20-39.
  28. Laursen EM. The total sediment load of streams. J Hydraul Div. 1958;84(1):1-36. doi: 1061/jyceaj.0000158.
  29. Yang SQ, Lim SY. Total load transport formula for flow in alluvial channels. J Hydraul Eng (N Y). 2003;129(1):68-72. doi: 1061/(asce)0733-9429(2003)129:1(68).
  30. Dey S. Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena. Heidelberg: Springer; 2014. p. 418-9.