Inactivation of Coliforms in Sludge Through Cavitation Phenomena by Ultrasonic Waves

Document Type : Original Article

Authors

1 Department of Environmental Engineering, Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran

2 Department of Environmental Engineering, Faculty of Civil Engineering, Babol (Noshirvani) University of Technology, Babol, Iran

10.34172/jaehr.2023.11

Abstract

Background: One of the most challenging and critical processes in wastewater treatment is sludge treatment. This study aimed to investigate the effects of low frequency ultrasound and high level of energy on inactivation rate of total coliform of sludge and ascertain the optimal operating parameters of the ultrasound waves.
Methods: In this research, the density of ultrasound (W/mL) and time (minutes) were investigated. The effect of these parameters on the inactivation of total coliform in sludge was also investigated.
Results: The results revealed that the optimum operating time and ultrasound density were 30 minutes and 2.5 W/mL, respectively. Also, the frequency of 20 kHz of total coliform removal rate in these conditions was 99.44% .
Conclusion: Ultrasound waves as well as micro and nano bubbles could remove total coliform and decontaminate the sludge, thereby incrementing the rate of treatment.

Keywords

Main Subjects


  1. Alimoradzadeh R, Assadi A, Afshar F, Rahmani AR, Samarghandi MR. Photocatalytic removal of Pseudomonas aeruginosa from water using titanium dioxide nanoparticles and UV irradiation. J Hum Environ Health Promot. 2015;1(1):28-33. doi: 29252/jhehp.1.1.4.
  2. Collivignarelli MC, Abbà A, Miino MC, Caccamo FM, Torretta V, Rada EC, et al. Disinfection of wastewater by UV-based treatment for reuse in a circular economy perspective. Where are we at? Int J Environ Res Public Health. 2020;18(1):77. doi: 3390/ijerph18010077.
  3. Li M, Song G, Liu R, Huang X, Liu H. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: a review. Front Environ Sci Eng. 2022;16(6):70. doi: 1007/s11783-021-1504-5.
  4. Naddeo V, Cesaro A, Mantzavinos D, Fatta-Kassinos D, Belgiorno V. Water and wastewater disinfection by ultrasound irradiation-a critical review. Glob Nest J. 2014;16(3):561-77.
  5. Yadav M, Gole VL, Sharma J, Yadav RK. Biologically treated industrial wastewater disinfection using synergy of US, LED-UVS, and oxidants. Chem Eng Process. 2021;169:108646. doi: 1016/j.cep.2021.108646.
  6. Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, et al. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: mechanism, synthesis, devices and application. Sci Total Environ. 2022;837:155720. doi: 1016/j.scitotenv.2022.155720.
  7. Declerck P, Vanysacker L, Hulsmans A, Lambert N, Liers S, Ollevier F. Evaluation of power ultrasound for disinfection of both Legionella pneumophila and its environmental host Acanthamoeba castellanii. Water Res. 2010;44(3):703-10. doi: 1016/j.watres.2009.09.062.
  8. Nam-Koong H, Schroeder JP, Petrick G, Schulz C. Preliminary test of ultrasonically disinfection efficacy towards selected aquaculture pathogens. Aquaculture. 2020;515:734592. doi: 1016/j.aquaculture.2019.734592.
  9. Li Y, Li W, Zhang X, Jiang J. Effects of ultrasonication on the DBP formation and toxicity during chlorination of saline wastewater effluents. J Environ Sci (China). 2022;117:326-35. doi: 1016/j.jes.2022.05.029.
  10. Al-Juboori RA, Aravinthan V, Yusaf T. Impact of pulsed ultrasound on bacteria reduction of natural waters. Ultrason Sonochem. 2015;27:137-47. doi: 1016/j.ultsonch.2015.05.007.
  11. Al-Juboori RA, Yusaf T. Biofouling in RO system: mechanisms, monitoring and controlling. Desalination. 2012;302:1-23. doi: 1016/j.desal.2012.06.016.
  12. Zhou X, Yan Y, Li Z, Yin J. Disinfection effect of a continuous-flow ultrasound/ultraviolet baffled reactor at a pilot scale. Ultrason Sonochem. 2017;37:114-9. doi: 1016/j.ultsonch.2017.01.003.
  13. Cao P, Hao C, Ma C, Yang H, Sun R. Physical field simulation of the ultrasonic radiation method: an investigation of the vessel, probe position and power. Ultrason Sonochem. 2021;76:105626. doi: 1016/j.ultsonch.2021.105626.
  14. Cao T, Tong W, Feng F, Zhang S, Li Y, Liang S, et al. H2O2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection. Chem Eng J. 2022;431:134005. doi: 1016/j.cej.2021.134005.
  15. Stack LJ, Carney PA, Malone HB, Wessels TK. Factors influencing the ultrasonic separation of oil-in-water emulsions. Ultrason Sonochem. 2005;12(3):153-60. doi: 1016/j.ultsonch.2003.10.008.
  16. Dehghani MH. Effectiveness of ultrasound on the destruction of coli. Am J Environ Sci. 2005;1(3):187-9.
  17. Mohammadi AR, Mehrdadi N, Nabi Bidhendi G, Torabian A. Excess sludge reduction using ultrasonic waves in biological wastewater treatment. Desalination. 2011;275(1-3):67-73. doi: 1016/j.desal.2011.02.030.
  18. Joyce E, Phull SS, Lorimer JP, Mason TJ. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus Ultrason Sonochem. 2003;10(6):315-8. doi: 10.1016/s1350-4177(03)00101-9.
  19. Wang F, Wang Y, Ji M. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. J Hazard Mater. 2005;123(1-3):145-50. doi: 1016/j.jhazmat.2005.03.033.
  20. Cui X, Talley JW, Liu G, Larson SL. Effects of primary sludge particulate (PSP) entrapment on ultrasonic (20 kHz) disinfection of Escherichia coli. Water Res. 2011;45(11):3300-8. doi: 1016/j.watres.2011.03.034.
  21. Vázquez-López M, Amabilis-Sosa LE, Moeller-Chávez GE, Roé-Sosa A, Neumann P, Vidal G. Evaluation of the ultrasound effect on treated municipal wastewater. Environ Technol. 2019;40(27):3568-77. doi: 1080/09593330.2018.1481889.
  22. American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater. Washington, DC: APHA; 2005.
  23. Ferreira SL, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, et al. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179-86. doi: 1016/j.aca.2007.07.011.
  24. Robinson T. Box-Behnken design. In: Encyclopedia of Statistics in Quality and Reliability. USA: John Wiley & Sons; 2007.
  25. Baş D, Boyacı İ Modeling and optimization I: usability of response surface methodology. J Food Eng. 2007;78(3):836-45. doi: 10.1016/j.jfoodeng.2005.11.024.
  26. Pham TT, Brar SK, Tyagi RD, Surampalli RY. Ultrasonication of wastewater sludge--consequences on biodegradability and flowability. J Hazard Mater. 2009;163(2-3):891-8. doi: 1016/j.jhazmat.2008.07.091.
  27. Gholami M, Mirzaei R, Mohammadi R, Zarghampour Z, Afshari A. Destruction of Escherichia coli and Enterococcus faecalis using low frequency ultrasound technology: a response surface methodology. Health Scope. 2014;3(1):e14213. doi: 17795/jhealthscope-14213.
  28. Lazarotto JS, Júnior EPM, Medeiros RC, Volpatto F, Silvestri S. Sanitary sewage disinfection with ultraviolet radiation and ultrasound. Int J Environ Sci Technol (Tehran). 2022;19(11):11531-8. doi: 1007/s13762-021-03764-7.
  29. Mahvi AH, Dehghani MH, Vaezi F. Ultrasonic technology effectiveness in total coliforms disinfection of water. J Appl Sci. 2005;5(5):856-8. doi: 3923/jas.2005.856.858.
  30. Bigelow TA, Northagen T, Hill TM, Sailer FC. The destruction of Escherichia coli biofilms using high-intensity focused ultrasound. Ultrasound Med Biol. 2009;35(6):1026-31. doi: 1016/j.ultrasmedbio.2008.12.001.
  31. Amabilis-Sosa LE, Vázquez-López M, Rojas JL, Roé-Sosa A, Moeller-Chávez GE. Efficient bacteria inactivation by ultrasound in municipal wastewater. Environments. 2018;5(4):47. doi: 3390/environments5040047.
  32. Ali N, Kamel Z, Wahba SZ. Ultrasonic as green chemistry for bacterial and algal control in drinking water treatment source. Egypt J Chem. 2020;63(10):4055-62. doi: 21608/ejchem.2020.42173.2852.
  33. Starek A, Kobus Z, Sagan A, Chudzik B, Pawłat J, Kwiatkowski M, et al. Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Sci Rep. 2021;11(1):3488. doi: 1038/s41598-021-83073-8.
  34. Ayyildiz O, Sanik S, Ileri B. Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency. Ultrason Sonochem. 2011;18(2):683-8. doi: 1016/j.ultsonch.2010.08.008.
  35. Zhou Z, Yang Y, Li X. Optimization of ultrasound-induced inactivation of model bacterial mixture using response surface methodology. J Water Supply Res Technol Aqua. 2015;65(1):54-63. doi: 2166/aqua.2015.045.