Reducing Pressure on Drinking Water Resources in Droughts: A Narrative Study

Document Type : Review Article(s)

Authors

1 Department of Health in Emergencies and Disasters, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Health in Disasters and Emergencies, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

3 Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran

4 Workplace Health Promotion Research Center and Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5 Faculty of Natural Resources, Yazd University, Yazd, Iran

10.34172/jaehr.2023.06

Abstract

The long trends of drought have caused much damage to the society. This phenomenon leads to an imbalance between water supply and demand with the abnormal dominance of arid climate over an area. Given the recent widespread climate changes in the world and the importance of conserving water resources, the present study aimed to identify methods to reduce pressure on drinking water resources in drought conditions. This study was conducted by using the narrative method (scope review). The research environment included Embase, Scopus, Web of Science and PubMed databases and the articles were selected and reviewed according to the defined and peerreviewed inclusion criteria. The period searched was 2000-2020. The findings showed that the effective components in reducing the pressure on drinking water resources are the use of new devices such as water desalination equipment, the use of methods to reduce water loss, culture and community education, and policy and adoption of water management strategies to prevent waste and recycling. Given the level of economic growth of each country and the prevailing culture, it is necessary to take managerial measures, educate members of society and use modern equipment to reduce water consumption. The results of this study showed that the recycling of drinking water and the use of gray water is also an important factor that needs special attention.

Keywords

Main Subjects


  1. Hogan DE, Burstein JL. Disaster Medicine. Lippincott Williams & Wilkins; 2007.
  2. Alexander DC. Natural Disasters. 1st ed. London: Routledge; 2018. p. 654.
  3. Kumar P, Sahu NC, Kumar S. Natural disasters and income inequality in South Asia: an FGLS panel analysis. In: Mishra AK, Arunachalam V, Patnaik D, eds. Critical Perspectives on Emerging Economies: An International Assessment. Cham: Springer; 2021. p. 27-39. doi: 10.1007/978-3-030-59781-8_3.
  4. Sözcü U. Natural disaster literacy curriculum proposal. J Disaster Risk. 2020;3(1):70-9. doi: 35341/afet.708183.
  5. EM-DAT. General Classification. 2021. Available from: https://www.emdat.be/classification. Accessed September 20, 2021.
  6. Javizadeh S, Hejazizadeh Z. Analysis of drought spatial statistics in Iran. J Appl Res Geogr Sci. 2019;19(53):251-77. doi: 29252/jgs.19.53.251. [Persian].
  7. Gholami A, Shamsnia SA, Shahidi N, Honar MR. The analysis of the frequency of occurrence, and drought severity in selected stations in Fars province using standardized precipitation index. In: Pro-Ceedings of International Conference on Environmental Engineering and Applications (ICEEA); 2011.
  8. Guo H, Bao A, Liu T, Jiapaer G, Ndayisaba F, Jiang L, et al. Spatial and temporal characteristics of droughts in Central Asia during 1966-2015. Sci Total Environ. 2018;624:1523-38. doi: 1016/j.scitotenv.2017.12.120.
  9. Haile GG, Tang Q, Li W, Liu X, Zhang X. Drought: progress in broadening its understanding. WIREs Water. 2020;7(2):e1407. doi: 1002/wat2.1407.
  10. Dai A. Increasing drought under global warming in observations and models. Nat Clim Chang. 2013;3(1):52-8. doi: 1038/nclimate1633.
  11. Wright B, Stanford BD, Reinert A, Routt JC, Khan SJ, Debroux JF. Managing water quality impacts from drought on drinking water supplies. J Water Supply Res Technol-Aqua. 2014;63(3):179-88. doi: 2166/aqua.2013.123.
  12. Negahban S, Bagheri S, Payandeh Z, Naderi S, Shiravand P. The evaluation of discharge regime impressibility of karstic springs from drought occurrence (case study: karstic springs of Alvand river basin). Geography and Environmental Planning. 2016;27(3):163-76. [Persian].
  13. Ekrami M, Ekhtesasi MR, Malekinezhad H. The effects and consequences of climatic drought on time delay and the change in water discharge of springs and qanats (case study: Yazd-Ardekan plain). Iran-Water Resources Research. 2013;9(2):19-26. [Persian].
  14. Mullin M. The effects of drinking water service fragmentation on drought-related water security. Science. 2020;368(6488):274-7. doi: 1126/science.aba7353.
  15. Akbari M, Najafi Alamdarlo H, Mosavi SH. Economic effects of changing the quality and quantity of water in drought conditions, case study: Qazvin, Iran. Int J Environ Sci Technol. 2022;19(4):2951-60. doi: 1007/s13762-021-03406-y.
  16. Peña-Gallardo M, Vicente-Serrano SM, Domínguez-Castro F, Beguería S. The impact of drought on the productivity of two rainfed crops in Spain. Nat Hazards Earth Syst Sci. 2019;19(6):1215-34.
  17. Carrão H, Naumann G, Barbosa P. Global projections of drought hazard in a warming climate: a prime for disaster risk management. Clim Dyn. 2018;50(5):2137-55. doi: 1007/s00382-017-3740-8.
  18. DeNicola E, Aburizaiza OS, Siddique A, Khwaja H, Carpenter DO. Climate change and water scarcity: the case of Saudi Arabia. Ann Glob Health. 2015;81(3):342-53. doi: 1016/j.aogh.2015.08.005.
  19. Tarawneh ZS. Water supply in Jordan under drought conditions. Water Policy. 2011;13(6):863-76.
  20. Kumar V, Del Vasto-Terrientes L, Valls A, Schuhmacher M. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: application of outranking method. Sci Total Environ. 2016;540:344-57. doi: 1016/j.scitotenv.2015.06.062.
  21. Frizenschaf J, Mosley L, Daly R, Kotz S. Securing drinking water supply during extreme drought—learnings from South Australia: Jacqueline Frizenschaf Luke Mosley. In: Drought: Research and Science-Policy Interfacing. CRC Press; 2015. p. 407-14.
  22. Liu X, Du H, Zhang Z, Crittenden JC, Lahr ML, Moreno-Cruz J, et al. Can virtual water trade save water resources? Water Res. 2019;163:114848. doi: 1016/j.watres.2019.07.015.
  23. Liu A, Giurco D, Mukheibir P. Motivating metrics for household water-use feedback. Resour Conserv Recycl. 2015;103:29-46. doi: 1016/j.resconrec.2015.05.008.
  24. Suzuki AH, Zambon RC, Yeh WW. Water supply planning and operation in the Metropolitan region of Saõ Paulo: worst drought in history, conflicts, response, and resilience. In: World Environmental and Water Resources Congress 2015. American Society of Civil Engineers; 2015.
  25. Khodarahimi S, Deghani H, Nikpourian M. Mental health and coping styles of rural residents affected by drinking water shortage in Fars province: an ecopsychological perspective. Eur J Ment Health. 2014;9(1):68-86.
  26. Deng C, Zhang G, Li Z, Li K. Interprovincial food trade and water resources conservation in China. Sci Total Environ. 2020;737:139651. doi: 1016/j.scitotenv.2020.139651.
  27. Gile BC, Sciuto PA, Ashoori N, Luthy RG. Integrated water management at the peri-urban interface: a case study of Monterey, California. Water. 2020;12(12):3585. doi: 3390/w12123585.
  28. 28 Ruiz DM, Tallis H, Tershy BR, Croll DA. Turning off the tap: common domestic water conservation actions insufficient to alleviate drought in the United States of America. PLoS One. 2020;15(3):e0229798. doi: 1371/journal.pone.0229798.
  29. Hurlimann A, McKay J. Urban Australians using recycled water for domestic non-potable use--an evaluation of the attributes price, saltiness, colour and odour using conjoint analysis. J Environ Manage. 2007;83(1):93-104. doi: 1016/j.jenvman.2006.02.008.
  30. Hurlimann A. Household use of and satisfaction with alternative water sources in Victoria Australia. J Environ Manage. 2011;92(10):2691-7. doi: 1016/j.jenvman.2011.06.007.
  31. Mashhadi Ali A, Shafiee ME, Berglund EZ. Agent-based modeling to simulate the dynamics of urban water supply: climate, population growth, and water shortages. Sustain Cities Soc. 2017;28:420-34. doi: 1016/j.scs.2016.10.001.
  32. Stec A, Kordana S. Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems. Resour Conserv Recycl. 2015;105(Pt A):84-94. doi: 1016/j.resconrec.2015.10.006.
  33. Garnier M, Harper DM, Blaskovicova L, Hancz G, Janauer GA, Jolánkai Z, et al. Climate change and European water bodies, a review of existing gaps and future research needs: findings of the ClimateWater project. Environ Manage. 2015;56(2):271-85. doi: 1007/s00267-015-0544-7.
  34. Dawadi S, Ahmad S. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J Environ Manage. 2013;114:261-75. doi: 1016/j.jenvman.2012.10.015.
  35. Kou L, Li X, Lin J, Kang J. Simulation of urban water resources in Xiamen based on a WEAP model. Water. 2018;10(6):732. doi: 3390/w10060732.
  36. Ferguson BC, Brown RR, Frantzeskaki N, de Haan FJ, Deletic A. The enabling institutional context for integrated water management: lessons from Melbourne. Water Res. 2013;47(20):7300-14. doi: 1016/j.watres.2013.09.045.
  37. Seelen LMS, Flaim G, Jennings E, De Senerpont Domis LN. Saving water for the future: public awareness of water usage and water quality. J Environ Manage. 2019;242:246-57. doi: 1016/j.jenvman.2019.04.047.
  38. Zhang X, Chen N, Sheng H, Ip C, Yang L, Chen Y, et al. Urban drought challenge to 2030 sustainable development goals. Sci Total Environ. 2019;693:133536. doi: 1016/j.scitotenv.2019.07.342.
  39. Benedict S, Hussein H. An analysis of water awareness campaign messaging in the case of Jordan: Water conservation for state security. Water. 2019;11(6):1156. doi: 3390/w11061156.
  40. Tikir A, Lehmann B. Climate change, theory of planned behavior and values: A structural equation model with mediation analysis: A letter. Climatic change. 2011;104(2):389-402.
  41. Deng Y, Wang M, Yousefpour R. How do people’s perceptions and climatic disaster experiences influence their daily behaviors regarding adaptation to climate change? - A case study among young generations. Sci Total Environ. 2017;581-582:840-7. doi: 1016/j.scitotenv.2017.01.022.
  42. Bangash RF, Passuello A, Sanchez-Canales M, Terrado M, López A, Elorza FJ, et al. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Sci Total Environ. 2013;458-460:246-55. doi: 1016/j.scitotenv.2013.04.025.
  43. Soares S, Terêncio D, Fernandes L, Machado J, Pacheco FAL. The potential of small dams for conjunctive water management in rural municipalities. Int J Environ Res Public Health. 2019;16(7):1239. doi: 3390/ijerph16071239.
  44. Koutiva I, Makropoulos C. Exploring the effects of alternative water demand management strategies using an agent-based model. Water. 2019;11(11):2216. doi: 3390/w11112216.
  45. Dallison RJ, Patil SD, Williams AP. Influence of historical climate patterns on streamflow and water demand in Wales, UK. Water. 2020;12(6):1684. doi: 3390/w12061684.
  46. Liu S, Wang N, Xie J, Jiang R, Zhao M. Optimal scale of urbanization with scarce water resources: a case study in an arid and semi-arid area of China. 2018;10(11):1602. doi: 10.3390/w10111602.
  47. Leusbrock I, Nanninga TA, Lieberg K, Agudelo-Vera CM, Keesman KJ, Zeeman G, et al. The urban harvest approach as framework and planning tool for improved water and resource cycles. Water Sci Technol. 2015;72(6):998-1006. doi: 2166/wst.2015.299.
  48. Scott D, Iipinge KN, Mfune JK, Muchadenyika D, Makuti OV, Ziervogel G. The story of water in Windhoek: a narrative approach to interpreting a transdisciplinary process. Water. 2018;10(10):1366. doi: 3390/w10101366.
  49. Wang L, Huang Y, Zhao Y, Li H, He F, Zhai J, et al. Research on optimal water allocation based on water rights trade under the principle of water demand management: a case study in Bayannur city, China. Water. 2018;10(7):863. doi: 3390/w10070863.
  50. Sağlam Y. Supply‐based dynamic Ramsey pricing: avoiding water shortages. Water Resour Res. 2015;51(1):669-84. doi: 1002/2013wr015155.
  51. Staben N, Nahrstedt A, Merkel W. Securing safe drinking water supply under climate change conditions. Water Sci Technol Water Supply. 2015;15(6):1334-42. doi: 2166/ws.2015.099.
  52. Dolnicar S, Schäfer AI. Desalinated versus recycled water: public perceptions and profiles of the accepters. J Environ Manage. 2009;90(2):888-900. doi: 1016/j.jenvman.2008.02.003.
  53. Zhang S, Zhang J, Yue T, Jing X. Impacts of climate change on urban rainwater harvesting systems. Sci Total Environ. 2019;665:262-74. doi: 1016/j.scitotenv.2019.02.135.
  54. MacDonald MC, Elliott M, Langidrik D, Chan T, Saunders A, Stewart-Koster B, et al. Mitigating drought impacts in remote island atolls with traditional water usage behaviors and modern technology. Sci Total Environ. 2020;741:140230. doi: 1016/j.scitotenv.2020.140230.
  55. Li Z, Zhang W, Aikebaier Y, Dong T, Huang G, Qu T, et al. Sustainable development of arid rangelands and managing rainwater in gullies, Central Asia. Water. 2020;12(9):2533. doi: 3390/w12092533.
  56. Ibrahim GR, Rasul A, Ali Hamid A, Ali ZF, Dewana AA. Suitable site selection for rainwater harvesting and storage case study using Dohuk Governorate. Water. 2019;11(4):864. doi: 3390/w11040864.
  57. Tapsuwan S, Cook S, Moglia M. Willingness to pay for rainwater tank features: a post-drought analysis of Sydney water users. Water. 2018;10(9):1199. doi: 3390/w10091199.
  58. Quinn R, Melville-Shreeve P, Butler D, Stovin V. A critical evaluation of the water supply and stormwater management performance of retrofittable domestic rainwater harvesting systems. Water. 2020;12(4):1184. doi: 3390/w12041184.
  59. Molaei O, Kouchakzadeh M, Haghighi Fashi F. Evaluation of rainwater harvesting performance for water supply in cities with cold and semi-arid climate. Water Sci Technol Water Supply. 2018;19(5):1322-9. doi: 2166/ws.2018.193.
  60. Villar-Navascués R, Pérez-Morales A, Gil-Guirado S. Assessment of rainwater harvesting potential from roof catchments through clustering analysis. Water. 2020;12(9):2623. doi: 3390/w12092623.
  61. Dismas J, Mulungu DM, Mtalo FW. Advancing rainwater harvesting as a strategy to improve water access in Kinondoni municipality, Tanzania. Water Sci Technol Water Supply. 2018;18(3):745-53. doi: 2166/ws.2018.007.
  62. Gado TA, El-Agha DE. Feasibility of rainwater harvesting for sustainable water management in urban areas of Egypt. Environ Sci Pollut Res Int. 2020;27(26):32304-17. doi: 1007/s11356-019-06529-5.
  63. Khanal G, Thapa A, Devkota N, Paudel UR. A review on harvesting and harnessing rainwater: an alternative strategy to cope with drinking water scarcity. Water Sci Technol Water Supply. 2020;20(8):2951-63. doi: 2166/ws.2020.264.
  64. Lee SH, Mohtar RH, Yoo SH. Assessment of food trade impacts on water, food, and land security in the MENA region. Hydrol Earth Syst Sci. 2019;23(1):557-72.
  65. Chen W, Wu S, Lei Y, Li S. Virtual water export and import in China’s foreign trade: a quantification using input-output tables of China from 2000 to 2012. Resour Conserv Recycl. 2018;132:278-90. doi: 1016/j.resconrec.2017.02.017.
  66. Naderi K. Energy recovery in Persian Gulf and Gulf Gorgan an seawater reverse osmosis to provide drinking water in urban. Hum Environ. 2012;10(34):29-38.
  67. Schiffler M. Perspectives and challenges for desalination in the 21st century. Desalination. 2004;165:1-9. doi: 1016/j.desal.2004.06.001.
  68. Morote ÁF, Rico AM, Moltó E. Critical review of desalination in Spain: a resource for the future? Geogr Res. 2017;55(4):412-23. doi: 1111/1745-5871.12232.
  69. Sola I, Sánchez-Lizaso JL, Muñoz PT, García-Bartolomei E, Sáez CA, Zarzo D. Assessment of the requirements within the environmental monitoring plans used to evaluate the environmental impacts of desalination plants in Chile. Water. 2019;11(10):2085. doi: 3390/w11102085.