Ecological and Human Health Risks Assessment of Potentially Toxic Elements Contamination of Surface Soils in Shushtar and Dezful, Iran

Document Type : Original Article

Author

Department of Soil Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

10.34172/jaehr.2023.04

Abstract

Background: The potentially toxic elements (PTEs) are one of the most dangerous pollutants in the environment. In this study, the elements namely cadmium, lead, chromium, nickel, copper and zinc were investigated in the soil.
Methods: In this study, 144 composite samples were randomly prepared from surface soils in a depth of 10 cm in the cities of Shushtar and Dezful. Soil sampling was performed in 12 stations in Shushtar and Dezful. The PTEs were determined by ICP Varian 710-ES device.
Results: The pattern of accumulation of PTEs was as Cu > Pb > Cd > Zn > Ni > Cr in Dezful. In Shushtar, the accumulation of metals in the soil was as Cu > Pb > Cd > Ni > Zn > Cr. The concentration of Ni and Cr in the surface soils of Shushtar was higher than Dezful. The Ecological risk of Cd in the surface soils of Dezful and Shushtar was higher than other PTEs. The most important risk factor for carcinogenicity was related to Cr (3.15 × 10-7) in children. Hazard quotient (HQ) value of studied PTEs for adults and children were obtained by ingestion, inhalation, and dermal contact
absorption of less than 1.
Conclusion: According to the results, the PTEs of Cd, Pb and Cu caused high pollution in the soils of Shushtar and Dezful, which is due to agricultural, industrial and urban activities in these areas. In general, the metals Cr, Zn and Ni slightly contaminated the soil. Also, the ecological risk of PTEs showed that the highest effects on soil was related to Cd and Pb metals.

Keywords

Main Subjects


  1. Hu B, Wang J, Jin B, Li Y, Shi Z. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environ Sci Pollut Res Int. 2017;24(24):19816-26. doi: 1007/s11356-017-9516-1.
  2. Ghorbani MR, Ghanavati N, Babaenejad T, Nazarpour A, Payandeh K. Assessment of the potential ecological and human health risks of heavy metals in Ahvaz oil field, Iran. PLoS One. 2020;15(11):e0242703. doi: 1371/journal.pone.0242703.
  3. Sari GL, Trihadiningrum Y, Suci FC, Fashanah Hadining A. Identification of total petroleum hydrocarbon and heavy metals levels in crude oil contaminated soil at Wonocolo public mining. EnvironmentAsia. 2018;11(2):109-17. doi: 14456/ea.2018.26.
  4. Hedayatzadeh F, Hassanzadeh N. Evaluation of heavy metal contamination and ecological risk assessment in sediments of Karun using aquatic pollution indices. Arch Hyg Sci. 2020;9(1):10-26. doi: 29252/ArchHygSci.9.1.10.
  5. Mamattursun E, Ajigul M, Mattohti A, Anwar M. Contamination and risk assessment of heavy metal elements in farmland soils along marginal zone of Bosten Lake wetland. 2018;50(2):369-75. doi: 10.13758/j.cnki.tr.2018.02.021.
  6. Salman SA, Zeid SA, Seleem EM, Abdel-Hafiz MA. Soil characterization and heavy metal pollution assessment in Orabi farms, El Obour, Egypt. Bull Natl Res Cent. 2019;43(1):42. doi: 1186/s42269-019-0082-1.
  7. Egbe ER, Nsonwu-Anyanwu AC, Offor SJ, Opara Usoro CA, Etukudo MH. Heavy metal content of the soil in the vicinity of the united cement factory in Southern Nigeria. J Adv Environ Health Res. 2019;7(2):122-30. doi: 22102/jaehr.2019.142404.1096.
  8. Xiao R, Wang S, Li R, Wang JJ, Zhang Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf. 2017;141:17-24. doi: 1016/j.ecoenv.2017.03.002.
  9. Han YH, Liu X, Rathinasabapathi B, Li HB, Chen Y, Ma LQ. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environ Pollut. 2017;227:569-77. doi: 1016/j.envpol.2017.05.001.
  10. Nazarpour A, Watts MJ, Madhani A, Elahi S. Source, spatial distribution and pollution assessment of Pb, Zn, Cu, and Pb, isotopes in urban soils of Ahvaz city, a semi-arid metropolis in southwest Iran. Sci Rep. 2019;9(1):5349. doi: 1038/s41598-019-41787-w.
  11. Sabet Aghlidi P, Cheraghi M, Lorestani B, Sobhanardakani S, Merrikhpour H. Spatial distribution of cadmium in agricultural soils of Eghlid County, South of Iran. Arch Hyg Sci. 2020;9(4):311-24. doi: 52547/ArchHygSci.9.4.311.
  12. Maqbool A, Xiao X, Wang H, Bian Z, Akram MW. Bioassessment of heavy metals in wheat crop from soil and dust in a coal mining area. Pollution. 2019;5(2):323-37. doi: 22059/poll.2019.267256.528.
  13. Sobhanardakani S. Human health risk assessment of Cd, Cu, Pb and Zn through consumption of raw and pasteurized cow’s milk. Iran J Public Health. 2018;47(8):1172-80.
  14. Sobhanardakani S, Jamshidi K. Assessment of metals (Co, Ni, and Zn) content in the sediments of Mighan wetland using geo-accumulation index. Iran J Toxicol. 2015;9(30):1386-90.
  15. Sobhanardakani S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Mar Pollut Bull. 2017;123(1-2):34-8. doi: 1016/j.marpolbul.2017.09.033.
  16. Bineshpour M, Payandeh K, Nazarpour A, Sabzalipour S. Assessment of human health risk and surface soil contamination by some toxic elements in Arak city, Iran. J Adv Environ Health Res. 2021;9(4):321-32. doi: 32598/jaehr.9.4.1233.
  17. Sobhanardakani S, Tayebi L, Farmany A. Toxic metal (Pb, Hg and As) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World Appl Sci J. 2011;14(10):1453-6.
  18. Fazekašová D, Fazekaš J. Soil quality and heavy metal pollution assessment of iron ore mines in Nizna Slana (Slovakia). Sustainability. 2020;12(6):2549. doi: 3390/su12062549.
  19. Rolka E, Żołnowski AC, Sadowska MM. Assessment of heavy metal content in soils adjacent to the DK16-route in Olsztyn (North-Eastern Poland). Pol J Environ Stud. 2020;29(6):4303-11. doi: 15244/pjoes/118384.
  20. Ennaji W, Barakat A, El Baghdadi M, Rais J. Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. J Sediment Environ. 2020;5(3):307-20. doi: 1007/s43217-020-00020-9.
  21. Hamzenejad Taghlidabad R, Khodaverdiloo H. Quantitative assessment of soil heavy metals pollution. Appl Soil Res. 2020;8(2):37-52. [Persian].
  22. Afyuni M. Soil Quality Standards and its Guides. Office of Vice Human Environment, Water and Soil Office; 2013. p. 161. [Persian].
  23. Alloway BJ. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. 3rd ed. Springer Science & Business Media; 2012. p. 614.
  24. Alloway BJ. Heavy Metal in Soils. New York: John Wiley & Sons; 2001. p. 20-8.
  25. Ghanavati N, Nazarpour A, De Vivo B. Ecological and human health risk assessment of toxic metals in street dusts and surface soils in Ahvaz, Iran. Environ Geochem Health. 2019;41(2):875-91. doi: 1007/s10653-018-0184-y.
  26. Boroujerdnia A, Mohammadi Roozbahani M, Nazarpour A, Ghanavati N, Payandeh K. Heavy metal pollution in surface soils of Ahvaz, Iran, using pollution indicators and health risk assessment. Arch Hyg Sci. 2020;9(4):299-310. doi: 52547/ArchHygSci.9.4.299.
  27. Chen H, Teng Y, Lu S, Wang Y, Wang J. Contamination features and health risk of soil heavy metals in China. Sci Total Environ. 2015;512-513:143-53. doi: 1016/j.scitotenv.2015.01.025.
  28. United States Environmental Protection Agency (USEPA). Exposure Factors Handbook Office of Research and Development. Washington, DC: USEPA; 1997.
  29. United States Environmental Protection Agency (USEPA). Method 3050B: Acid Digestion of Sediments, Sludges, and Soils, Revision 2. Washington, DC: USEPA; 1996.
  30. Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980;14(8):975-1001. doi: 1016/0043-1354(80)90143-8.
  31. Abrahim G. Holocene Sediments of Tamaki Estuary: Characterisation and Impact of Recent Human Activity on an Urban Estuary in Auckland, New Zealand [dissertation]. Auckland, New Zealand: The University of Auckland; 2005. p. 361.
  32. Muller G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal. 1969;2:108-18.
  33. United States Environmental Protection Agency (USEPA). User’s Guide (EB/OL), 2010.
  34. Rhoades JD. Soluble salts. In: Compbell GS, Nielsen DA, Jackson RD, Klute A, Mortland MM, eds. Methods of Soil Analysis. Part1. Madison, WI: Soil Sci Soc of Am; 1986. p. 167-79.
  35. Nelson BW, Sommers LE. Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR, eds. Methods of Soil Analysis. Part 2, Soil Sci Soc of Am. Madison, WI; 1986. p. 539-77.
  36. Kacholi DS, Sahu M. Levels and health risk assessment of heavy metals in soil, water, and vegetables of Dar es Salaam, Tanzania. J Chem. 2018;2018:1402674. doi: 1155/2018/1402674.
  37. Sharma S, Nagpal AK, Kaur I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 2018;255:15-22. doi: 1016/j.foodchem.2018.02.037.
  38. Guan Y, Shao C, Ju M. Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int J Environ Res Public Health. 2014;11(7):7286-303. doi: 3390/ijerph110707286.
  39. Adesuyi AA, Njoku KL, Akinola MO. Assessment of heavy metals pollution in soils and vegetation around selected industries in Lagos State, Nigeria. J Geosci Environ Prot. 2015;3(7):11-9. doi: 4236/gep.2015.37002.
  40. Zeng F, Wei W, Li M, Huang R, Yang F, Duan Y. Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. Int J Environ Res Public Health. 2015;12(12):15584-93. doi: 3390/ijerph121215005.
  41. Yadav P, Singh B, Garg VK, Mor S, Pulhani V. Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Hum Ecol Risk Assess. 2017;23(1):14-27. doi: 1080/10807039.2016.1218750.
  42. Karimpour M, Afyuni M, Esmaili Sari A, Ghasempouri SM. Effect of sewage sludge on mercury accumulation in soil and corn. J Residuals Sci Technol. 2020;7(1):35-42.
  43. Sun H, Wan S, Li L, Liu D. Distribution of heavy metals in soil and plant of reed wetland in the Dongting Lake of China during different seasons. J Soil Water Conserv. 2015;29(5):289-93.
  44. Chonokhuu S, Batbold C, Chuluunpurev B. Assessment of heavy metal pollution of topsoil in settlement area, Darkhan city. Proc Mong Acad Sci. 2018;58(1):55-65. doi: 5564/pmas.v58i1.972.
  45. Mohammadi Roozbahani M, Sobhan Ardakani S, Karimi H, Sorooshnia R. Natural and anthropogenic source of heavy metals pollution in the soil samples of an industrial complex a case study. Iran J Toxicol. 2015;9(29):1336-41.
  46. Angulo E. The Tomlinson pollution load index applied to heavy metal, ‘Mussel-Watch’ data: a useful index to assess coastal pollution. Sci Total Environ. 1996;187(1):19-56. doi: 1016/0048-9697(96)05128-5.
  47. Chan LS, Ng SL, Davis AM, Yim WW, Yeung CH. Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny’s Bay, Hong Kong. Mar Pollut Bull. 2001;42(7):569-83. doi: 1016/s0025-326x(00)00203-4.
  48. Adetuga AT, Omonona AO, Jubril AJ. Assessment of heavy metals levels in soils of Old Oyo National Park, Sothwest, Nigeria. Eur J Environ Earth Sci. 2020;1(4):1-7. doi: 24018/ejgeo.2020.1.4.20.
  49. Ericson B, Otieno VO, Nganga C, St Fort J, Taylor MP. Assessment of the presence of soil lead contamination near a former lead smelter in Mombasa, Kenya. J Health Pollut. 2019;9(21):190307. doi: 5696/2156-9614-9.21.190307.
  50. Bhuyan MS, Islam MS. A critical review of heavy metal pollution and its effects in Bangladesh. Sci J Energy Eng. 2017;5(4):95-108. doi: 11648/j.sjee.20170504.13.
  51. Proshad R, Islam MS, Kormoker T, Bhuyan MS, Hanif MA, Hossain N, et al. Contamination of heavy metals in agricultural soils: ecological and health risk assessment. SF J Nanochem Nanotechnol. 2019;2(1):1012.
  52. Yang S, Zhao J, Chang SX, Collins C, Xu J, Liu X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: a synthesis. Environ Int. 2019;128:165-74. doi: 1016/j.envint.2019.04.044.
  53. Jia Z, Li S, Wang L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci Rep. 2018;8(1):3256. doi: 1038/s41598-018-21569-6.
  54. Zhao Q, Wang Y, Cao Y, Chen A, Ren M, Ge Y, et al. Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China. Sci Total Environ. 2014;470-471:340-7. doi: 1016/j.scitotenv.2013.09.086.
  55. Gržetić I, Ghariani RH. Potential health risk assessment for soil heavy metal contamination in the central zone of Belgrade (Serbia). J Serb Chem Soc. 2008;73(8-9):923-34. doi: 2298/jsc0809923g.
  56. Adedeji OH, Olayinka OO, Tope-Ajayi OO. Spatial distribution and health risk assessment of soil pollution by heavy metals in Ijebu-Ode, Nigeria. J Health Pollut. 2019;9(22):190601. doi: 5696/2156-9614-9.22.190601.
  57. Geranian H, Mokhtari AR, Cohen DR. A comparison of fractal methods and probability plots in identifying and mapping soil metal contamination near an active mining area, Iran. Sci Total Environ. 2013;463-464:845-54. doi: 1016/j.scitotenv.2013.06.100.
  58. Cohen DR, Rutherford NF, Morisseau E, Christoforou I, Zissimos AM. Anthropogenic versus lithological influences on soil geochemical patterns in Cyprus. Geochem Explor Environ Anal. 2012;12(4):349-60. doi: 1144/geochem2011-111.
  59. Chen L, Cui ZX, Wang D. Variations in Cd and Pb accumulations of hot pepper (Capsicum annuum L.) cultivars for screening pollution-and nitrate-safe cultivars. Pol J Environ Stud. 2020;29(4):2597-607. doi: 15244/pjoes/113094.
  60. Zhang C, Zang X, Dai Z, Zhang X, Ma Z. Remediation Techniques for cadmium-contaminated dredged river sediments after land disposal. Sustainability. 2021;13(11):6093. doi: 3390/su13116093.
  61. Otvös E, Pázmándi T, Tuba Z. First national survey of atmospheric heavy metal deposition in Hungary by the analysis of mosses. Sci Total Environ. 2003;309(1-3):151-60. doi: 1016/s0048-9697(02)00681-2.
  62. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 2014;468-469:843-53. doi: 1016/j.scitotenv.2013.08.090.
  63. Amin H, Arain BA, Jahangir TM, Abbasi AR, Mangi J, Abbasi MS, et al. Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique. Geol Ecol Landsc. 2021;5(1):53-64. doi: 1080/24749508.2019.1700671.
  64. Huang WL, Chang WH, Cheng SF, Li HY, Chen HL. Potential risk of consuming vegetables planted in soil with copper and cadmium and the influence on vegetable antioxidant activity. Appl Sci. 2021;11(9):3761. doi: 3390/app11093761.
  65. Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294-301. doi: 1016/s0002-8223(01)00078-5.
  66. Chesworth W. Geochemistry of micronutrients. In: Mortvedt JJ, ed. Micronutrients in Agriculture. Vol 4. Wiley; 1991. p. 1-30. doi: 2136/sssabookser4.2ed.c1.
  67. Malle K-G. Zink in der Umwelt. Acta Hydrochim Hydrobiol. 1992;20(4):196-204. doi: 1002/aheh.19920200404.
  68. Mertens J, Degryse F, Springael D, Smolders E. Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. Environ Sci Technol. 2007;41(8):2992-7. doi: 1021/es061995 + .
  69. Prasad MN, Hagemeyer J. Heavy Metal Stress in Plants: From Molecules to Ecosystems. Heidelberg: Springer-Verlag; 1999. p. 401.
  70. Ying M. Monitoring of Heavy Metals in the Bottlary River Using Typha capensis and Phragmites australis [thesis]. University of the Western Cape; 2005. p. 1-90.
  71. Yoon J, Cao X, Zhou Q, Ma LQ. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 2006;368(2-3):456-64. doi: 1016/j.scitotenv.2006.01.016.
  72. Proshad R, Kormoker T, Islam MS, Chandra K. Potential health risk of heavy metals via consumption of rice and vegetables grown in the industrial areas of Bangladesh. Hum Ecol Risk Assess. 2020;26(4):921-43. doi: 1080/10807039.2018.1546114.
  73. Kharazi A, Leili M, Khazaei M, Alikhani MY, Shokoohi R. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. J Food Compost Anal. 2021;100:103890. doi: 1016/j.jfca.2021.103890.
  74. Zakaria Z, Zulkafflee NS, Mohd Redzuan NA, Selamat J, Ismail MR, Praveena SM, et al. Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants (Basel). 2021;10(6):1070. doi: 3390/plants10061070.
  75. Rollinson HR. Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge; 2014.