Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid Using Fe2O2/CeO2/Ag Composite Nanoparticles under Ultraviolet

Document Type : Original Article


1 Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

2 Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

3 Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

4 Department of the Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.



Background: The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used to control of agricultural pests (water and soil) and is among the most widely distributed pollutants in the environment.
Methods: In this study, Fe2O3/CeO2/Ag composite nanoparticles were synthesized using a simple coprecipitation method. The as-synthesized samples were examined using X-ray diffraction, field emission scanning electron microscopy, and X-ray analysis. The photo catalytic activity of the as-synthesized samples was examined through photo degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under ultraviolet irradiation. The effects of pH, irradiation time, initial 2,4-D concentration and catalyst dose on the photo catalytic performance of Fe2O3/CeO2/Ag composite nanoparticles were investigated through an optimization process. The photo catalytic reaction kinetic data were analyzed using Langmuir-Hinshelwood model, and the absorption equilibrium was examined by Langmuir and Freundlich isotherm models.
Results: The results suggested the second order reaction kinetics as the best model for 2,4-D photo degradation. Moreover, Langmuir isotherm with a higher R2 was reported as the most suitable model. The photo catalytic activities revealed the highest photo degradation percentage for Fe2O3/CeO2/Ag composite nanoparticles with a degradation order as Fe2O3/CeO2/Ag (75.70%)>Fe2O3/CeO2 (36.28%) >CeO2 (26.92)>Fe2O3 (11.96).
Conclusions: Based on the determination of nanomaterial efficiency, its components and photo catalytic properties, can be used to remove this contaminant and other toxic compounds.


  1. Brillas E, Calpe JC, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res. 2000; 34(8):2253-62. [DOI:10.1016/S0043-1354(99)00396-6]
  2. Orooji N, Takdastan A, Yengejeh RJ, Jorfi S, Davami AH. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using Fe3O4@ TiO2/Cu2O magnetic nanocomposite stabilized on granular activated carbon from aqueous solution. Res Chem Intermediates. 2020; 46(5):2833–57. [DOI:10.1007/s11164-020-04124-9]
  3. Wang Q, Wang B, Ma Y, Xing S. Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide. Chem Eng J. 2018; 354:473-80. [DOI:10.1016/j.cej.2018.08.055]
  4. Golshan M, Kakavandi B, Ahmadi M, Azizi M. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@ CuFe2O4) into 2,4-D degradation: Process feasibility, mechanism and pathway. J Hazard Mater. 2018; 359:325-37. [DOI:10.1016/j.jhazmat.2018.06.069] [PMID]
  5. Chen H, Zhang Z, Feng M, Liu W, Wang W, Yang Q, et al. Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite). Chem Eng J. 2017; (313):498-507. [DOI:10.1016/j.cej.2016.12.075]
  6. Deonikar VG, Reddy KK, Chung WJ, Kim H. Facile synthesis of Ag3PO4/g-C3N4 composites in various solvent systems with tuned morphologies and their efficient photocatalytic activity for multi-dye degradation. J Photochem Photobiol: A Chem. 2019; 368: 168-81. [DOI:10.1016/j.jphotochem.2018.09.034]
  7. Kearns JP, Wellborn LS, Summers RS, Knappe DRU. 2,4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res. 2014; 62:20-8. [DOI:10.1016/j.watres.2014.05.023] [PMID]
  8. Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition. Bioresour Technol. 2017; 232:146-51. [DOI:10.1016/j.biortech.2017.01.069] [PMID]
  9. Sun C, Baig SA, Lou Z, Zhu J, Wang Z, Li X, et al. Electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid using nanosized titanium nitride doped palladium/nickel foam electrodes in aqueous solutions. Appl Catal B. 2014; 158-159:38-47. [DOI:10.1016/j.apcatb.2014.04.004]
  10. Schenone AV, Conte LO, Botta MA, Alfano OM. Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and Response Surface Methodology (RSM). J Environ Manage. 2015; 155:177-83. [DOI:10.1016/j.jenvman.2015.03.028] [PMID]
  11. Cai J, Zhou M, Pan Y, Lu X. Degradation of 2,4-dichlorophenoxyacetic acid by anodic oxidation and electro-Fenton using BDD anode: Influencing factors and mechanism. Sep Purif Technol. 2020; 230:115867. [DOI:10.1016/j.seppur.2019.115867]
  12. Yang Z, Shi X, Dai M, Wang L, Xu X, Guo R. Promoting degradation of 2,4-dichlorophenoxyacetic acid with fermentative effluents from hydrogen-producing reactor. Chemosphere. 2018; 201:859-63. [DOI:10.1016/j.chemosphere.2018.03.072] [PMID]
  13. Li X, Zhou M, Pan Y. Enhanced degradation of 2,4-dichlorophenoxyacetic acid by pre-magnetization Fe-C activated persulfate: Influential factors, mechanism and degradation pathway. J Hazard Mater. 2018; 353:454-65. [DOI:10.1016/j.jhazmat.2018.04.035] [PMID]
  14. Cai J, Zhou M, Yang W, Pan Y, Lu X, Serrano KG. Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation. Chemosphere. 2018; 212:784-93. [DOI:10.1016/j.chemosphere.2018.08.127] [PMID]
  15. Li W, Li Y, Zhang D, Lan Y, Guo J. CuO-Co3O4@ CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate. J Hazard Mater. 2020; 381:121209. [DOI:10.1016/j.jhazmat.2019.121209] [PMID]
  16. Sandeep S, Nagashree KL, Maiyalagan T, Keerthiga G. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid-A comparative study in hydrothermal TiO2 and commercial TiO2. Appl Surf Sci. 2018; 449:371-9. [DOI:10.1016/j.apsusc.2018.02.051]
  17. Safa S, Mirzaei M, Kazemi F, Ghaneian MT, Kaboudin B. Study of visible-light photocatalytic degradation of 2,4-dichlorophenoxy acetic acid in batch and circulated-mode photoreactors. J Environ Health Sci Eng. 2019; 17(1):233-45. [DOI:10.1007/s40201-019-00343-4] [PMID] [PMCID]
  18. Tho NTM, Khanh DN, Thang NQ, Lee YI, Phuong NTK. Novel reduced graphene oxide/ZnBi2O4 hybrid photocatalyst for visible light degradation of 2,4-dichlorophenoxyacetic acid. Environ Sci Pollut Res Int. 2020; 27(10):11127-37. [DOI:10.1007/s11356-020-07752-1] [PMID]
  19. Ebrahimi R, Mohammadi M, Maleki A, Jafari A, Shahmoradi B, Rezaee R, et al. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in aqueous solution using Mn-doped ZnO/graphene nanocomposite under LED radiation. J Inorg Organomet Polym Mater. 2020; 30(3):923-34. [DOI:10.1007/s10904-019-01280-3]
  20. Li J, Guan W, Yan X, Wu Z, Shi W. Photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid using LaFeO3 photocatalyst under visible light irradiation. Catal Letters. 2018; 148:23-9. [DOI:10.1007/s10562-017-2206-2]
  21. Zhang X, Liu H, Li W, Cui G, Xu H, Han K, et al. Visible-light photocatalytic degradation of aromatic contaminants with simultaneous H2 generation: Comparison of 2,4-dichlorophenoxyacetic acid and 4-chlorophenol. Catal Letters. 2008; 125:371-5. [DOI:10.1007/s10562-008-9542-1]
  22. Chawla S, Uppal H, Yadav M, Bahadur N, Singh N. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water. Ecotoxicol Environ Saf. 2017; 135:68-74. [DOI:10.1016/j.ecoenv.2016.09.017] [PMID]
  23. Gashtasbi F, Yengejeh RJ, Babaei AA. Photocatalysis assisted by activated-carbon-impregnated magnetite composite for removal of cephalexin from aqueous solution. Korean J Chem Eng. 2018; 35(1):1726-34. [DOI:10.1007/s11814-018-0061-5]
  24. Gashtasbi F, Yengejeh RJ, Babaei AA. Adsorption of vancomycin antibiotic from aqueous solution using an activated carbon impregnated magnetite composite. Desalination Water Treat. 2017; 88:286-97. [DOI:10.5004/dwt.2017.21455]
  25. Yoon KH, Noh JS, Kwon CH, Muhammed M. Photocatalytic behavior of TiO2 thin films prepared by sol-gel process. Mater Chem Phys. 2006; 95(1):79-83. [DOI:10.1016/j.matchemphys.2005.06.001]
  26. Zhang L, Li H, Liu Y, Tian Z, Yang B, Sun Z, et al. Adsorption-photocatalytic degradation of methyl orange over a facile one-step hydrothermally synthesized TiO2/ZnO-NH2-RGO nanocomposite. RSC Adv. 2014; 4(89):48703-11. [DOI:10.1039/C4RA09227A]
  27. Mekatel E, Amorkrane S, Trari M, Nibou D, Dahdouh N, Ladjali S. Combined adsorption/photocatalysis process for the decolorization of acid orange 61. Arabian J Sci Eng. 2019; 44:5311-22. [DOI:10.1007/s13369-018-3575-6]
  28. El-Moselhy MM, Kamal SM. Selective removal and preconcentration of methylene blue from polluted water using cation exchange polymeric material. Groundw Sustain Dev. 2018; 6:6-13. [DOI:10.1016/j.gsd.2017.10.001]
  29. Nekouei F, Nekouei S. Comparative evaluation of BiOCl-NPls-AC composite performance for methylene blue dye removal from solution in the presence/absence of UV irradiation: Kinetic and isotherm studies. J Alloys Compd. 2017; 701:950-66. [DOI:10.1016/j.jallcom.2017.01.157]
  30. Ali A, Mannan A, Hussain I, Hussain I, Zia M. Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process. Environ Nanotechnol Monit Manag. 2018; 9:1-11. [DOI:10.1016/j.enmm.2017.11.003]
  31. Gunasundari E, Senthil Kumar P. Adsorption isotherm, kinetics and thermodynamic analysis of Cu (II) ions onto the dried algal biomass (Spirulina platensis). J Ind Eng Chem. 2017; 56:129-44. [DOI:10.1016/j.jiec.2017.07.005]
  32. Sivakumar P, Gaurav Kumar GK, Renganathan S. Synthesis and characterization of ZnS-Ag nanoballs and its application in photocatalytic dye degradation under visible light. J Nanostructure Chem. 2014; 4:107. [DOI:10.1007/s40097-014-0107-0]
  33. Cai J, Zhou M, Yang W, Pan Y, Lu X, Serrano KG. Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation. Chemosphere. 2018; 212:784-93. [DOI:10.1016/j.chemosphere.2018.08.127] [PMID]
  34. Lv X, Ma Y, Li Y, Yang Q. Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles. Water. 2020; 12(10):2909. [DOI:10.3390/w12102909]
  35. Kamarudin NS, Jusoh R, Jalil AA, Setiabudi HD, Sukor NF. Synthesis of silver nanoparticles in green binary solvent for degradation of 2,4-D herbicide: Optimization and kinetic studies. Chem Eng Res Des. 2020; 159:300-14. [DOI:10.1016/j.cherd.2020.03.025]