Effect of Synthetic and Organic Chelators Application on Copper Phytoextraction by Calendula Officinalis L.

Document Type : Original Article


1 Research and Technology Institute of Plant Production, Shahid Bahonar University, Kerman, Iran.

2 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.



Background: Using ornamental plants for phytoremediation of Heavy Metals (HMs) in soil environments has been grown due to its cost-effectiveness and ease of use in urban environments. The aim of this study was to assess the potential use of Calendula officinalis for soil Copper (Cu) phytoremediation in the presence of different types of chelating agents (Ethylene Diamine Tetra-Acetic Acid (EDTA), Citric acid (CIT), and Tartaric Acids (TAR)) at different levels of Cu in a calcareous soil.
Methods: To investigate the effects of stress caused by the use of chelating agents on biochemical changes of C. officinalis, the activity of some antioxidants of C. officinalis (Superoxide Dismutase (SOD), Catalase (CAT), Ascorbate Peroxidase (APX), Peroxidase (POD), and Polyphenol Oxidase (PPO)) was evaluated.
Results: As results, C. officinalis showed an increase in shoot and root Cu concentration in the presence of all chelating agents compared to the control. The highest accumulation of Cu in the root/shoot was observed in EDTA-treated plants. However, an increased Cu level in plant parts (due to consuming of EDTA) was corresponded to lower dry weight in shoot and root; higher H2O2 and malondialdehyde (MDA) contents, and antioxidant activity (APX, PPO, CAT, SOD, and POD) in plants compared to the control treatment. On the contrary, the application of CIT and TAR primarily increased shoot and root dry weight and Cu concentration.
Conclusion: Generally, the results of this study could be suggested that plants possess a well-organized resistance mechanism against oxidative stress caused by using of CIT and TAR. 


Main Subjects

  1. Saleem MH, Rehman M, Kamran M, Afzal J, Noushahi HA, Liu L. Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil. Environ Sci Pollut Res. 2020; 27(24):30367-77. [DOI:10.1007/s11356-020-09232-y] [PMID]
  2. Jadia CD, Fulekar MH. Phytoremediation of heavy metals: Recent techniques. Afr J Biotechnol. 2009; 8(6):921-8. https://www.ajol.info/index.php/ajb/article/view/59987
  3. Koptsik GN. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review. Eurasian Soil Sci. 2014; 47(9):923-39. [DOI:10.1134/S1064229314090075]
  4. Evangelou MWH, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 2007; 68(6):989-1003. [DOI:10.1016/j.chemosphere.2007.01.062][PMID]
  5. Merdoud O, Cameselle C, Boulakradeche MO, Akretche DE. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids. Environ Sci Process Impacts. 2016; 18(11):1440-8. [DOI:10.1039/C6EM00380J][PMID]
  6. Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, et al. EDTA-enhanced phytoremediation of heavy metals: A review. Soil Sediment Contam Int J. 2014; 23(4):389-416. [DOI:10.1080/15320383.2014.831029]
  7. Thayalakumaran T, Vogeler I, Scotter DR, Percival HJ, Robinson BH, Clothier BE. Leaching of copper from contaminated soil following the application of EDTA. I. Repacked soil experiments and a model. Aust J Soil Res. 2003; 41(2):323-33. [DOI:10.1071/SR02059]
  8. Chigbo Ch, Batty L. Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z. mays. Water Air Soil Pollut. 2015; 226(3):74. [DOI:10.1007/s11270-014-2277-2]
  9. Wang Z, Wang W, Wang Z, Liu Y, Ma M, Wu J. Impact of a long-term cultivation on low molecular weight organic acids in greenhouse soil and their influence on vegetable uptake heavy metals. Soil Sediment Contam Int J. 2021; :30(1):1-11. [DOI:10.1080/15320383.2020.1779177]
  10. Shiau RJ, Smith RL, Avellar B. Effects of steam explosion processing and organic acids on CCA removal from treated wood waste. Wood Sci Technol. 2000; 34(5):377-88. [DOI:10.1007/s002260000047]
  11. Yang Y, Ratté D, Smets BF, Pignatello JJ, Grasso D. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere. 2001; 43(8):1013-21. [DOI:10.1016/S0045-6535(00)00498-7]
  12. Wang Y, Yan A, Dai J, Wang NN, Wu Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: A popular ornamental plant and potential Cd hyperaccumulator. Environ Monit Assess. 2012; 184(2):929-37. [DOI:10.1007/s10661-011-2010-1][PMID]
  13. Liu J, Xin X, Zhou Q. Phytoremediation of contaminated soils using ornamental plants. Environ Rev. 2018; 26(1):43-54. [DOI:10.1139/er-2017-0022]
  14. Moustakas NK, Akoumianaki-Ioannidou A, Barouchas PE. The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.). Aust J Crop Sci. 2011; 5(3):277-82. https://www.researchgate.net/publication/234181808
  15. Goswami S, Das S. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal to Ecotoxicol Environ Saf. 2016; 126:211-8. [DOI:10.1016/j.ecoenv.2015.12.030][PMID]
  16. Tabrizi L, Mohammadi S, Delshad M, Moteshare Zadeh B. Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot marigold (Calendula officinalis L.) under heavy metals stress. Int J Phytoremediation. 2015; 17(12):1244-52. [DOI:10.1080/15226514.2015.1045131][PMID]
  17. Farooq A, Nadeem M, Abbas Gh, Shabbir A, Khalid MS, Javeed HMR, et al. Cadmium partitioning, physiological and oxidative stress responses in marigold (Calendula calypso) grown on contaminated soil: Implications for phytoremediation. Bull Environ Contam Toxicol. 2020; 105(2):270-6. [DOI:10.1007/s00128-020-02934-6][PMID]
  18. Saffari VR, Saffari M. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil. Int J Phytoremediation. 2020; 22(11):1204-14. [DOI:10.1080/15226514.2020.1754758][PMID]
  19. Rehman S, Abbas Gh, Shahid M, Saqib M, Farooq ABU, Hussain M, et al. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicol Environ Saf. 2019; 171:146-53. [DOI:10.1016/j.ecoenv.2018.12.077][PMID]
  20. Kabata-Pendias A. Trace elements in soils and plants. Boca Raton: CRC Press; 2010. [DOI:10.1201/b10158]
  21. Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 1978; 42(3):421-8. [DOI:10.2136/sssaj1978.03615995004200030009x]
  22. Shabbir Z, Sardar A, Shabbir A, Abbas Gh, Shamshad S, Khalid S, et al. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. 2020; 259:127436. [DOI:10.1016/j.chemosphere.2020.127436][PMID]
  23. Wang H, Shan XQ, Wen B, Zhang Sh, Wang ZJ. Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis. Arch Environ Contam Toxicol. 2004; 47(2):185-92. [DOI:10.1007/s00244-004-2222-2][PMID]
  24. Küpper H, Götz B, Mijovilovich A, Küpper FC, Meyer-Klaucke W. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol. 2009; 151(2):702-14. [DOI:10.1104/pp.109.139717][PMID][PMCID]
  25. Zaheer IE, Ali Sh, Rizwan M, Farid M, Shakoor MB, Gill RA, et al. Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf. 2015; 120:310-7. [DOI:10.1016/j.ecoenv.2015.06.020][PMID]
  26. Chen KF, Yeh TY, Lin CF. Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): Hydroponic and pot experiments. Int Sch Res Notices. 2012; 2012:729693. [DOI:10.5402/2012/729693]
  27. Sinhal VK, Srivastava A, Singh VP. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ 2010; 31(3):255-9. [PMID]
  28. Chen Y, Li X, Shen Zh. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere. 2004; 57(3):187-96. [DOI:10.1016/j.chemosphere.2004.05.044][PMID]
  29. Liu J, Zhou Q, Wang S. Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. Int J Phytoremediation. 2010; 12(5):503-15. [DOI:10.1080/15226510903353112][PMID]
  30. Han Y, Zhang L, Gu J, Zhao J, Fu J. Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophila Pall. cultivated in Pb mine tailings. Int Biodeterior Biodegradation. 2018; 128:15-21. [DOI:10.1016/j.ibiod.2016.05.011]
  31. Marschner H. Marschner’s mineral nutrition of higher plants. Academic press; 2011.
  32. Nowack B, Schulin R, Robinson BH. Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol. 2006; 40(17):5225-32. [DOI:10.1021/es0604919][PMID]
  33. Duarte B, Freitas J, Caçador I. The role of organic acids in assisted phytoremediation processes of salt marsh sediments. Hydrobiologia. 2011; 674(1):169-77. [DOI:10.1007/s10750-011-0731-3]
  34. Muhammad D, Chen F, Zhao J, Zhang G, Wu F. Comparison of EDTA-and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediation. 2009; 11(6):558-74. [DOI:10.1080/15226510902717580][PMID]
  35. do Nascimento CWA, Amarasiriwardena D, Xing B. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut. 2006; 140(1):114-23. [DOI:10.1016/j.envpol.2005.06.017][PMID]
  36. Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, et al. Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem. 2012; 53:33-9. [DOI:10.1016/j.plaphy.2012.01.006][PMID]
  37. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci. 2013; 14(5):9643-84. [DOI:10.3390/ijms14059643][PMID][PMCID]
  38. Gajewska E, SkŁodowska M. Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf. 2010; 73(5):996-1003. [DOI:10.1016/j.ecoenv.2010.02.013][PMID]
  39. Ehsan S, Ali Sh, Noureen Sh, Mahmood Kh, Farid M, Ishaque W, et al. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf. 2014; 106:164-72. [DOI:10.1016/j.ecoenv.2014.03.007][PMID]
  40. Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, et al. Cadmium toxicity in Maize (Zea mays L.): Consequences on antioxidative systems, reactive oxygen species and cadmium accumulat Environ Sci Pollut Res. 2015; 22(21):17022-30. [DOI:10.1007/s11356-015-4882-z][PMID]