A Comparative Study on the Capability of Tree Species in Urban Afforestation to Accumulate Heavy Metals

Document Type : Original Article


1 Department of Environmental Science, Faculty of Natural Resources and Environments, Malayer University, Malayer, Iran.

2 Department of Natural Resources, Faculty of Agriculture, Borujerd Branch, Islamic Azad University, Borujerd, Iran.



Background: The present study investigated the concentrations of lead, nickel, copper, zinc, their toxicity potential, and their ecological hazard in surface soils of Hamedan City, Iran. Also, using the Bio-concentration Factor (BCF), concentration Comprehensive Bio-concentration Index (CBCI), and Metal Accumulation Index (MAI), was evaluated the ability of some tree and shrub species to absorb heavy metals in soil and air.
Methods: Sampling of leaves of nine tree species and shrubs (plane, acacia, elm, willow, mulberry, ash, redbud, pine, and cypress) was performed in six stations. After preparation and acid digestion of the samples, the concentrations of heavy metals were determined using an atomic absorption spectrometer.
Results: The trend of changes in soil heavy Mean±SD metal concentrations was in the order of nickel> zinc> copper> lead in the amounts of 61.41±11.34˃ 43.04±14.4˃ 42.87±8.36˃ 18.77±6.51 mg/kg. Evaluation of acute toxicity potential indicators and ecological risk of heavy metals indicated low soil pollution status. Findings of BCF, CBCI, and MAI ndices in the leaves of the species showed that the highest levels of BCF of heavy metals, i.e., zinc, copper, lead, and nickel, were in willow, elm, cypress, and pine species, respectively. Results show that heavy metal accumulation in different species.
Conclusion: Depends on soil type, tree species, climatic conditions, type of pollutant source, species age, and other factors. In this study, elm and acacia have the highest ability to absorb heavy metals from soil and air.


  1. El-Khatib AA, Barakat NA, Youssef NA, Samir NA. Bioaccumulation of heavy metals air pollutants by urban trees. Int J Phytoremediation. 2020; 22(2):210-22. [DOI:10.1080/15226514.2019.1652883] [PMID]
  2. Hatami-Manesh M, Mortazavi S, Solgi E, Mohtadi A. [Assessing the capacity of trees and shrubs species to accumulate of particulate matter (PM10, PM2.5 and PM0.2) (Persian)]. Iran J Health Environ. 2019; 12(1):1-16. http://ijhe.tums.ac.ir/article-1-6222-fa.html
  3. Nowak DJ, Hirabayashi S, Doyle M, McGovern M, Pasher J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For Urban Green. 2018; 29:40-8. [DOI:10.1016/j.ufug.2017.10.019]
  4. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015; 525(7569):367-71. [DOI:10.1038/nature15371] [PMID]
  5. Weinmayr G, Pedersen M, Stafoggia M, Andersen ZJ, Galassi C, Munkenast J, et al. Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE). Environ Int. 2018; 120:163-71. [DOI:10.1016/j.envint.2018.07.030] [PMID]
  6. Gouveia N, Junger WL. Effects of air pollution on infant and children respiratory mortality in four large Latin-American cities. Environ Pollut. 2018; 232:385-91. [DOI:10.1016/j.envpol.2017.08.125] [PMID]
  7. Sevik H, Cetin M, Ozel HB, Akarsu H, Cetin IZ. Analyzing of usability of tree-rings as biomonitors for monitoring heavy metal accumulation in the atmosphere in urban area: A case study of cedar tree (Cedrus sp.). Environ Monit Assess. 2020; 192(1):23. [DOI:10.1007/s10661-019-8010-2] [PMID]
  8. Kulkarni P, Baron PA, Willeke K, editors. Aerosol measurement: principles, techniques, and applications. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2011. [DOI:10.1002/9781118001684]
  9. Teiri H, Pourzamani HR, Hajizadeh Y. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere. 2018; 197:375-81. [DOI:10.1016/j.chemosphere.2018.01.078] [PMID]
  10. Xu J, Jing BB, Zhang KX, Cui YC, Malkinson D, Kopel D, et al. Heavy metal contamination of soil and tree-ring in urban forest around highway in Shanghai, China. Hum Ecol Risk Assess: Int J. 2017; 23(7):1745-62. [DOI:10.1080/10807039.2017.1340826]
  11. Mohammadi A, Mokhtari M, Mosleh Arani A, Taghipour H, Hajizadeh Y, Fallahzadeh H. Biomonitoring levels of airborne metals around Urmia Lake using deciduous trees and evaluation of their tolerance for greenbelt development. Environ Sci Pollut Res. 2018; 25(21):21138-48. [DOI:10.1007/s11356-018-1899-0] [PMID]
  12. Shi J, Zhang G, An H, Yin W, Xia X. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmos Pollut Res. 2017; 8(5):836-42. [DOI:10.1016/j.apr.2017.01.011]
  13. Brignole D, Drava G, Minganti V, Giordani P, Samson R, Vieira J, et al. Chemical and magnetic analyses on tree bark as an effective tool for biomonitoring: A case study in Lisbon, Portugal. Chemosphere. 2018; 195:508-14. [DOI:10.1016/j.chemosphere.2017.12.107] [PMID]
  14. Kuddus M, Kumari R, Ramteke PW. Studies on air pollution tolerance of selected plants in Allahabad city, India. J Environ Res Manag. 2011; 2(3):042-6. https://www.researchgate.net/publication/268255786
  15. Yap CK, Ismail A, Tan SG, Omar H. Correlations between speciation of Cd, Cu, Pb and Zn in sediment and their concentrations in total soft tissue of green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia. Environ Int. 2002; 28(1-2):117-26. [DOI:10.1016/S0160-4120(02)00015-6]
  16. Zhao X, Liu J, Xia X, Chu J, Wei Y, Shi Sh, et al. The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environ Sci Pollut Res Int. 2014; 21(7):5076-85. [DOI:10.1007/s11356-013-2393-3] [PMID]
  17. Liu YJ, Zhu YG, Ding H. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a Metal Accumulation Index (MAI). Environ Pollut. 2007; 145(2):387-90. [DOI:10.1016/j.envpol.2006.05.010] [PMID]
  18. Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980; 14(8):975-1001. [DOI:10.1016/0043-1354(80)90143-8]
  19. Yi Y, Yang Zh, Zhang Sh. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut. 2011; 159(10):2575-85. [DOI:10.1016/j.envpol.2011.06.011] [PMID]
  20. Wang J, Liu W, Yang R, Zhang L, Ma J. Assessment of the potential ecological risk of heavy metals in reclaimed soils at an opencast coal mine. Disaster Adv. 2013; 6(S3):366-77. https://www1.cugb.edu.cn/uploadCms/file/20600/papers_upload/276.pdf
  21. Ali MM, Ali ML, Islam MS, Rahman MZ. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnol Monit Manag. 2016; 5:27-35. [DOI:10.1016/j.enmm.2016.01.002]
  22. Pedersen F, Bjørnestad E, Andersen HV, Kjølholt J, Poll Ch. Characterization of sediments from Copenhagen Harbour by use of biotests. Water Sci Technol. 1998; 37(6-7):233-40. [DOI:10.2166/wst.1998.0757]
  23. Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, et al. A new method for assessment of sediment-associated contamination risks using multivariate statistical approach. MethodsX. 2018; 5:268-76. [DOI:10.1016/j.mex.2018.03.005] [PMID] [PMCID]
  24. MacDonald DD, Ingersoll CG, Berger TA. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol. 2000; 39(1):20-31. [DOI:10.1007/s002440010075] [PMID]
  25. Kamani H, Hoseini M, Safari G, Jaafari J, Ashrafi SD, Mahvi AH. [Concentrations of Heavy Metals in surface soil of Zahedan City (Persian)]. Journal of Health. 2017; 8(2):182-90. http://healthjournal.arums.ac.ir/article-1-1184-en.html
  26. Taghipour M. [Spatial variation of selected heavy metals in some surface soils of Hamedan province (Persian)] [MSc. thesis]. Isfahan: Isfahan University of Technology; 2009. https://ganj.irandoc.ac.ir/#/articles/95f198a79a3dcdedfdcf5e06ca24ad95
  27. Chen X, Xia X, Zhao Y, Zhang P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J Hazard Mater. 2010; 181(1-3):640-6. [DOI:10.1016/j.jhazmat.2010.05.060] [PMID]
  28. Kleckerová A, Dočekalová H. Dandelion plants as a biomonitor of urban area contamination by heavy metals. Int J Environ Res. 2014; 8(1):157-64. [DOI:10.22059/IJER.2014.705]
  29. Nazarpour A, Ghanavati N, Babaenejad T. [Evaluation of the level of pollution and potential ecological risk of some heavy metals in surface soils in the Ahvaz oil-field (Persian)]. Iran J Health Environ. 2017; 10(3):391-400. http://ijhe.tums.ac.ir/article-1-5924-fa.html
  30. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. A fern that hyperaccumulates arsenic. Nature. 2001; 409(6820):579. [DOI:10.1038/35054664] [PMID]
  31. Alahabadi A, Ehrampoush MH, Miri M, Ebrahimi Aval H, Yousefzadeh S, Ghaffari HR, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere. 2017; 172:459-67. [DOI:10.1016/j.chemosphere.2017.01.045] [PMID]
  32. Hu Y, Wang D, Wei L, Zhang X, Song B. Bioaccumulation of heavy metals in plant leaves from Yan׳ an city of the Loess Plateau, China. Ecotoxicol Environ Saf. 2014; 110:82-8. [DOI:10.1016/j.ecoenv.2014.08.021] [PMID]
  33. Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut. 2011; 159(12):3560-70. [DOI:10.1016/j.envpol.2011.08.008] [PMID]
  34. Mortazavi S, Ghasemi Aghbash F, Naderi Motiy R. [The feasibility of biomonitoring of heavy metals by wooden species of urban areas (Persian)]. J For Res Dev. 2019; 5(1):55-71. http://jfrd.urmia.ac.ir/article_120687_en.html
  35. Romiayei L, Payandeh Kh. [Study of heavy metal accumulation in water, surface sediment and 4 aquatic plant species of Karkheh River (Persian)]. J Wetl Ecobiol. 2017; 9(3):69-84. http://jweb.iauahvaz.ac.ir/article-1-620-fa.html