Assessment of Health Impacts of PM2.5 by AirQ+ Software in the City of Sanandaj, Iran (2018-2019)

Document Type : Original Article

Authors

1 Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.

2 Students Research Center, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.

3 Department of Environmental Health Engineering, School of Vice Chancellor for Health Affairs, Kurdistan University of Medical Sciences, Sanandaj, Iran.

4 Department of Air Pollution Control of Kurdistan, Environmental Protection Agency, Sanandaj, Iran.

5 Department of Occupational Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran.

10.32598/JAEHR.9.1.1200

Abstract

Background: Particulate or particle mattes in term of air pollution are particles with a diameter of 2.5 μm or less (PM2.5). PM2.5 is a natural source of air pollution and has harmful effects on citizens in Sanandaj City, located in the west of Iran.
Methods: In this study, the hourly data of concentration of PM2.5 were taken from the Kurdistan Environmental Protection Agency. During the study period (2018-2019), the 24-hour concentration of PM2.5 exceeded 339 times the average level. By AirQ+ software, the relationship between data and Relative Risk (RR), Baseline Incidence (BI), and Attributable Proportion (AP) were estimated. Then chronic obstructive pulmonary disease, lung cancer, ischemic heart disease, and brain stroke in the range of over 30 years were estimated.
Results: The main target of this study was to survey the relationship between PM2.5 concentration and the death rate of citizens of this non-industrial city. The long-term health effect (more than 6 months) of PM2.5 caused 326 deaths on average (except for accidents and poisoning).
Conclusion: Increase the concentration of PM2.5 is one factor that affects a high percentage of mortality rate.

Keywords


  1. Münzel T, Herzog J, Schmidt FP, Sørensen M. Environmental stressors and cardiovascular disease: The evidence is growing. Eur Heart J. 2017; 38(29):2297-9. [DOI:10.1093/eurheartj/ehx306] [PMID]
  2. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159):1923-94. [DOI:10.1016/S0140-6736(18)32225-6] [PMID] [PMCID]
  3. Lefler JS, Higbee JD, Burnett RT, Ezzati M, Coleman NC, Mann DD, et al. Air pollution and mortality in a large, representative U.S. Cohort: Multiple-pollutant analyses and spatial and temporal decompositions. Environ Health. 2019; 18(1):101. [DOI:10.1186/s12940-019-0544-9] [PMID] [PMCID]
  4. Broome RA, Fann N, Navin Cristina TJ, Fulcher Ch, Duc H, Morgan GG. The health benefits of reducing air pollution in Sydney, Australia. Environ Res. 2015; 143(Pt A):19-25. [DOI:10.1016/j.envres.2015.09.007] [PMID]
  5. Mohseni Bandpi A, Eslami A, Shahsavani A, Khodagholi F, Alinejad A. Physicochemical characterization of ambient PM2.5 in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549). Sci Total Environ. 2017; 593-594:182-90. [DOI:10.1016/j.scitotenv.2017.03.150] [PMID]
  6. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389(10082):1907-18. [DOI:10.1016/S0140-6736(17)30505-6]
  7. Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013; 14(13):1262-3. [DOI:10.1016/s1470-2045(13)70487-x] [PMID]
  8. Cavalli F, Alastuey A, Areskoug H, Ceburnis D, Čech J, Genberg J, et al. A European aerosol phenomenology-4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe. Atmos Environ. 2016; 144:133-45. [DOI:10.1016/j.atmosenv.2016.07.050]
  9. Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. Long-and short-term exposure to PM2.5 and mortality: Using novel exposure models. Epidemiology. 2013; 24(4):555-61. [DOI:10.1097/EDE.0b013e318294beaa] [PMID] [PMCID]
  10. Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016; 8(1):E69-74. [DOI:10.3978/j.issn.2072-1439.2016.01.19] [PMID] [PMCID]
  11. Avino P, Protano C, Vitali M, Manigrasso M. Benchmark study on fine-mode aerosol in a big urban area and relevant doses deposited in the human respiratory tract. Environ Pollut. 2016; 216:530-7. [DOI:10.1016/j.envpol.2016.06.005] [PMID]
  12. Crouse DL, Peters PA, Hystad P, Brook JR, van Donkelaar A, Martin RV, et al. Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Health Perspect. 2015; 123(11):1180-6. [DOI:10.1289/ehp.1409276] [PMID] [PMCID]
  13. Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int J Environ Res Public Health. 2018; 15(7):1380. [DOI:10.3390/ijerph15071380] [PMID] [PMCID]
  14. Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, et al. Formation of urban fine particulate matter. Chem Rev. 2015; 115(10):3803-55. [DOI:10.1021/acs.chemrev.5b00067] [PMID]
  15. Nourmoradi H, Moradnejadi K, Mohammadi Moghadam F, Khosravi B, Hemati L, Khoshniyat R, et al. The effect of dust storm on the microbial quality of ambient air in Sanandaj: A city located in the West of Iran. Glob J Health Sci. 2015; 7(7):114-9. [DOI:10.5539/gjhs.v7n7p114]
  16. Mesbahzadeh T, Salajeghe A, Soleimani Sardoo F, Zehtabian GR, Ranjbar A, Krakauer NY, et al. Climatology of dust days in the Central Plateau of Iran. Nat Hazards. 2020; 104(2):1801-17. [DOI:10.1007/s11069-020-04248-6]
  17. Rashki A, Kaskaoutis DG, Francois P, Kosmopoulos PG, Legrand M. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Res. 2015; 16:35-48. [DOI:10.1016/j.aeolia.2014.10.003]
  18. Abdi Vishkaee F, Flamant C, Cuesta J, Oolman L, Flamant P, Khalesifard HR. Dust transport over Iraq and Northwest Iran associated with winter Shamal: A case study. J Geophys Res. 2012; 117(D3):D03201. [DOI:10.1029/2011JD016339]
  19. Ziyaee A, Karimi AR, Hirmas DR, Kehl M, Lakzian A, Khademi H, et al. Spatial and temporal variations of airborne dust fallout in Khorasan Razavi Province, Northeastern Iran. Geoderma. 2018; 326:42-55. [DOI:10.1016/j.geoderma.2018.04.010]
  20. Rashki A, Middleton NJ, Goudie AS. Dust storms in Iran - Distribution, causes, frequencies and impacts. Aeolian Res. 2021; 48:100655. [DOI:10.1016/j.aeolia.2020.100655]
  21. Mohammadpour K, Sciortino M, Saligheh M, Raziei T, Darvishi Boloorani A. Spatiotemporal regionalization of atmospheric dust based on multivariate analysis of MACC model over Iran. Atmos Res. 2021; 249:105322. [DOI:10.1016/j.atmosres.2020.105322]
  22. World Health Organization. Ambient air pollution: A global assessment of exposure and burden of disease. 2016: https://www.who.int/phe/publications/air-pollution-global-assessment/en/
  23. Shahsavani A, Naddafi K, Jafarzade Haghighifard N, Mesdaghinia A, Yunesian M, Nabizadeh R, et al. The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. J Arid Environ. 2012; 77:72-83. [DOI:10.1016/j.jaridenv.2011.09.007]
  24. Congressional Research Service. Air Quality: EPA’s 2013 Changes to the Particulate Matter (PM) Standard [Internet]. 2015 [Updated 2015 January 7]. Available from: https://www.everycrsreport.com/files/20150107_R42934_1ff9cb6b83e567019f30f3f101475a68264fddbd.pdf
  25. Oliveri Conti G, Heibati B, Kloog I, Fiore M, Ferrante M. A review of AirQ Models and their applications for forecasting the air pollution health outcomes. Environ Sci Pollut Res Int. 2017; 24(7):6426-45. [DOI:10.1007/s11356-016-8180-1] [PMID]
  26. Versporten A, Bolokhovets G, Ghazaryan L, Abilova V, Pyshnik G, Spasojevic T, et al. Antibiotic use in Eastern Europe: A cross-national database study in coordination with the WHO Regional Office for Europe. Lancet Infect Dis. 2014; 14(5):381-7. [DOI:10.1016/S1473-3099(14)70071-4]
  27. Nourmoradi H, Omidi Khaniabadi Y, Goudarzi GR, Daryanoosh SM, Khoshgoftar M, Omidi F, et al. Air quality and health risks associated with exposure to particulate matter: A cross-sectional study in Khorramabad, Iran. Health Scope. 2016; 5(2):e31766. [DOI:10.17795/jhealthscope-31766]
  28. Ghanizadeh Gh, Khoshniyat R, Karimi F, Haghshenas MR, Abdollahi M, Hamidi E, et al. Short-term effects of PM10 to increase rate of hospital admission cardiovascular and respiratory of Sanandaj, Iran during 2015. Iran J Health Saf Environ. 2018; 5(2):957-65. http://www.ijhse.ir/index.php/IJHSE/article/view/291
  29. Omidi Khaniabadi Y, Goudarzi GR, Daryanoosh SM, Borgini A, Tittarelli A, De Marco A. Exposure to PM10, NO2, and O3 and impacts on human health. Environ Sci Pollut Res Int. 2017; 24(3):2781-9. [DOI:10.1007/s11356-016-8038-6] [PMID]
  30. Bahrami Asl F, Kermani M, Aghaei M, Karimzadeh S, Salahshour Arian S, Shahsavani A, et al. [Estimation of diseases and mortality attributed to NO2 pollutant in five metropolises of Iran using AirQ model in 2011-2012 (Persian)]. J Mazandaran Univ Med Sci. 2015; 24(121):239-49. http://jmums.mazums.ac.ir/article-1-4965-fa.html
  31. World Health Organization. The top 10 causes of death [Internet]. 2020 [Updated 2020 December 9]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  32. Burnett RT, Pope III CA, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014; 122(4):397-403. [DOI:10.1289/ehp.1307049] [PMID] [PMCID]
  33. Sicard P, Lesne O, Alexandre N, Mangin A, Collomp R. Air quality trends and potential health effects - Development of an aggregate risk index. Atmos Environ. 2011; 45(5):1145-53. [DOI:10.1016/j.atmosenv.2010.12.052]
  34. Milner A, Page A, LaMontagne AD. Long-term unemployment and suicide: A systematic review and meta-analysis. PLoS One. 2013; 8(1):e51333. [DOI:10.1371/journal.pone.0051333] [PMID] [PMCID]
  35. Bonyadi Z, Ehrampoush MH, Ghaneian MT, Mokhtari M, Sadeghi A. Cardiovascular, respiratory, and total mortality attributed to PM2.5 in Mashhad, Iran. Environ Monit Assess. 2016; 188(10):570. [DOI:10.1007/s10661-016-5574-y] [PMID]
  36. Hopke PK, Hashemi Nazari SS, Hadei M, Yarahmadi M, Kermani M, Yarahmadi E, et al. Spatial and temporal trends of short-term health impacts of PM2.5 in Iranian cities; A modelling approach (2013-2016). Aerosol Air Qual Res. 2018; 18:497-504. [DOI:10.4209/aaqr.2017.09.0325]
  37. Mudu P, Gapp Ch, Dunbar M. AirQ+ 1.0 example of calculations [Internet]. 2016 [Updated 2016 April]. Available from: https://www.euro.who.int/__data/assets/pdf_file/0008/309995/AirQ1-0-Examples-calculations.pdf
  38. Rich DQ. Accountability studies of air pollution and health effects: Lessons learned and recommendations for future natural experiment opportunities. Environ Int. 2017; 100:62-78. [DOI:10.1016/j.envint.2016.12.019] [PMID] [PMCID]
  39. Sanyal Sh, Rochereau T, Maesano CN, Com-Ruelle L, Annesi-Maesano I. Long-term effect of outdoor air pollution on mortality and morbidity: A 12-year follow-up study for metropolitan France. Int J Environ Res Public Health. 2018; 15(11):2487. [DOI:10.3390/ijerph15112487] [PMID] [PMCID]
  40. Rennard SI. COPD: Overview of definitions, epidemiology, and factors influencing its development. Chest. 1998; 113(4):235S-41. [DOI:10.1378/chest.113.4_Supplement.235S] [PMID]
  41. Guo C, Zhang Z, Lau AKH, Lin CQ, Chuang YC, Chan J, et al. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: A longitudinal, cohort study. Lancet Planet Health. 2018; 2(3):E114-25. [DOI:10.1016/S2542-5196(18)30028-7]
  42. Li MH, Fan LC, Mao B, Yang JW, Choi AMK, Cao WJ, et al. Short-term exposure to ambient fine particulate matter increases hospitalizations and mortality in COPD: A systematic review and meta-analysis. Chest. 2016; 149(2):447-58. [DOI:10.1378/chest.15-0513] [PMID]
  43. Kan H, Chen B. A case-crossover analysis of air pollution and daily mortality in Shanghai. J Occup Health. 2003; 45(2):119-24. [DOI:10.1539/joh.45.119] [PMID]
  44. Cao Q, Rui G, Liang Y. Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model. BMC Public Health. 2018; 18(1):925. [DOI:10.1186/s12889-018-5844-4] [PMID] [PMCID]
  45. Fu J, Jiang D, Lin G, Liu K, Wang Q. An ecological analysis of PM2.5 concentrations and lung cancer mortality rates in China. BMJ Open. 2015; 5(11):e009452. [DOI:10.1136/bmjopen-2015-009452] [PMID] [PMCID]
  46. Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med. 2016; 22(2):138-43. [DOI:10.1097/MCP.0000000000000248] [PMID] [PMCID]
  47. Mousavi SM, Sundquist J, Hemminki K. Cancer incidence among Turkish, Chilean, and North African first-generation immigrants in Sweden compared with residents in the countries of origin and native Swedes. Eur J Cancer Prev. 2013; 22(1):1-7. [DOI:10.1097/CEJ.0b013e3283552e4d] [PMID]
  48. Dai X, Liu H, Chen D, Zhang J. Association between ambient particulate matter concentrations and hospitalization for ischemic heart disease (I20-I25, ICD-10) in China: A multicity case-crossover study. Atmos Environ. 2018; 186:129-35. [DOI:10.1016/j.atmosenv.2018.05.033]
  49. Pinault LL, Weichenthal S, Crouse DL, Brauer M, Erickson A, van Donkelaar A, et al. Associations between fine particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort. Environ Res. 2017; 159:406-15. [DOI:10.1016/j.envres.2017.08.037] [PMID]
  50. Hayes RB, Lim Ch, Zhang Y, Cromar K, Shao Y, Reynolds HR, et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int J Epidemiol. 2020; 49(1):25-35. [DOI:10.1093/ije/dyz114] [PMID] [PMCID]
  51. Wang Y, Zhong Y, Liao J, Wang G. PM2.5-related cell death patterns. Int J Med Sci. 2021; 18(4):1024-9. [DOI:10.7150/ijms.46421] [PMID] [PMCID]
  52. Wang Y, Eliot MN, Wellenius GA. Short-term changes in ambient particulate matter and risk of stroke: A systematic review and meta-analysis. J Am Heart Assoc. 2014; 3(4):e000983. [DOI:10.1161/JAHA.114.000983] [PMID] [PMCID]
  53. Huang K, Liang F, Yang X, Liu F, Li J, Xiao Q, et al. Long term exposure to ambient fine particulate matter and incidence of stroke: Prospective cohort study from the China-PAR project. BMJ. 2019; 367:l6720. [DOI:10.1136/bmj.l6720] [PMID] [PMCID]
  54. Dong H, Yu Y, Yao Sh, Lu Y, Chen Zh, Li G, et al. Acute effects of air pollution on ischaemic stroke onset and deaths: A time-series study in Changzhou, China. BMJ Open. 2018; 8(7):e020425. [DOI:10.1136/bmjopen-2017-020425] [PMID] [PMCID]
  55. Yang WS, Wang X, Deng Q, Fan WY, Wang WY. An evidence-based appraisal of global association between air pollution and risk of stroke. Int J Cardiol. 2014; 175(2):307-13. [DOI:10.1016/j.ijcard.2014.05.044] [PMID]