Assessment of Tolerance of Some Tree Species to Air Contamination Using Air Pollution Tolerance and Anticipated Performance Indices in Isfahan City, Iran

Document Type : Original Article


1 Department of Environmental Science, Faculty of Natural Resources and Environments, Malayer University, Malayer, Iran.

2 Department of Biology, Faculty of Sciences, Yasouj University, Yasouj, Iran.



Background: In the present study, the tolerance of plantain tree species (Platanus orientalis, Morus nigra and Ailanthus altissima) to air pollution was evaluated using Air Pollution Tolerance Index (ATPI) and Anticipated Performance Index (API) index in Isfahan city (Iran).
Methods: For this purpose, three dominant trees growing at six stations in Isfahan was selected and then sampling of the tree leaves was performed, after being transferred to the laboratory, the ATPI and API index were calculated.
Results: The results of calculating the ATPI in the leaves of M. nigra, P. orientalis and A. altissima species showed that the highest values of ATPI index was obtained in M. nigra at 20.77 and then detected in P. orientalis and A. altissima with the values 14.90 and 14.33 respectively. According to API values Morus nigra had the best performance (Score = 6 so it classified as the Excellent) while P. orientalis and A. altissima had very good and intermediate performance, respectively.
Conclusion: According to ATPI and API index most tolerant tree species was Morus nigra, so it would be the most suitable species for plantation programme in urban and pollutant areas followed by Platanus orientalis and Ailanthus altissima. As well as our results suggest that Platanus orientalis and Ailanthus altissima can be used as bio-indicators of air pollution due to their low ATPI scores (lower than 16). The present study suggests that the combination of both the ATPI and API indices for identifying and selection of plant species is very useful for plantation in urban areas.


  1. Kwak MJ, Lee JK, Park S, Lim Y, Kim H, Kim KN, et al. Evaluation of the importance of some east asian tree species for refinement of air quality by estimating air pollution tolerance index, anticipated performance index, and air pollutant uptake. Sustainability. 2020; 12(7):3067. [DOI:10.3390/su12073067]
  2. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J Hazard Mater. 2017; 325:36-58. [DOI:10.1016/j.jhazmat.2016.11.063] [PMID]
  3. Roy A, Bhattacharya T, Kumari M. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci Total Environ. 2020; 722:137622. [DOI:10.1016/j.scitotenv.2020.137622] [PMID]
  4. Nowak DJ. Urban trees, air quality and human health. In: Gallis CH, Shi WS, editors. Forests for public health.​ Newcastle Upon Tyne: Cambridge Scholars Publishing; 2020.
  5. Alahabadi A, Ehrampoush MH, Miri M, Aval HE, Yousefzadeh S, Ghaffari HR, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere. 2017; 172:459-67. [DOI:10.1016/j.chemosphere.2017.01.045] [PMID]
  6. Sevik H, Ozel HB, Cetin M, Özel HU, Erdem T. Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Qual Atmosphere Health. 2019; 12(2):189-95. [DOI:10.1007/s11869-018-0641-x]
  7. Yadav R, Pandey P. Assessment of Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API) of roadside plants for the development of greenbelt in urban area of Bathinda City, Punjab, India. Bull Environ Contam Toxicol. 2020; 105(6):906-14. [DOI:10.1007/s00128-020-03027-0] [PMID]
  8. Durkan N, Ugulu I, Unver M, Dogan Y, Baslar S. Concentrations of trace elements aluminum, boron, cobalt and tin in various wild edible mushroom species from Buyuk Menderes River Basin of Turkey by ICP-OES. Trace Elem Electrolytes. 2011; 28(4):242. [DOI:10.5414/TEX01198]
  9. Sen A, Khan I, Kundu D, Das K, Datta JK. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species. Environ Monit Assess. 2017; 189(6):262. [DOI:10.1007/s10661-017-5955-x] [PMID]
  10. Unver MC, Ugulu I, Durkan N, Baslar S, Dogan Y. Heavy metal contents of Malva sylvestris sold as edible greens in the local markets of Izmir. Ekoloji. 2015; 24(96):13-25. [DOI:10.5053/ekoloji.2015.01]
  11. Selmi W, Weber C, Rivière E, Blond N, Mehdi L, Nowak D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For Urban Green. 2016; 17:192-201. [DOI:10.1016/j.ufug.2016.04.010]
  12. Martínez-López S, Martínez-Sánchez MJ, Pérez-Sirvent C, Bech J, Martínez MDCG, García-Fernandez AJ. Screening of wild plants for use in the phytoremediation of mining-influenced soils containing arsenic in semiarid environments. J Soils Sediments. 2014; 14(4):794-809. [DOI:10.1007/s11368-013-0836-6]
  13. Hu Y, Wang D, Wei L, Zhang X, Song B. Bioaccumulation of heavy metals in plant leaves from Yan׳ an city of the Loess Plateau, China. Ecotoxicol Environ Saf. 2014; 110:82-8. [DOI:10.1016/j.ecoenv.2014.08.021] [PMID]
  14. Nadgórska-Socha A, Kandziora-Ciupa M, Trzęsicki M, Barczyk G. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere. 2017; 183:471-82. [DOI:10.1016/j.chemosphere.2017.05.128] [PMID]
  15. Irshad MA, Nawaz R, Ahmad S, Arshad M, Rizwan M, Ahmad N, et al. Evaluation of anticipated performance index of tree species for air pollution mitigation in Islamabad, Pakistan. JASEM. 2020; 23(1).
  16. Goyal D, Yadav A, Vats T. Air Pollution and Its Role in Stress Physiology. Air Pollution and Environmental Health.Springer; 2020. [DOI:10.1007/978-981-15-3481-2_6]
  17. Balasubramanian A, Prasath CH, Gobalakrishnan K, Radhakrishnan S. Air Pollution Tolerance Index (APTI) assessment in tree species of Coimbatore urban city, Tamil Nadu, India. Int J Env Clim Change. 2018; 8:27-38. [DOI:10.9734/ijecc/2018/v8i127106]
  18. Morani A, Nowak DJ, Hirabayashi S, Calfapietra C. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative. Environ Pollut. 2011; 159(5):1040-7. [DOI:10.1016/j.envpol.2010.11.022] [PMID]
  19. Dzierżanowski K, Popek R, Gawrońska H, Sæbø A, Gawroński SW. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation. 2011; 13(10):1037-46. [DOI:10.1080/15226514.2011.552929] [PMID]
  20. Braun S, Achermann B, De Marco A, Pleijel H, Karlsson PE, Rihm B, et al. Epidemiological analysis of ozone and nitrogen impacts on vegetation-Critical evaluation and recommendations. Sci Total Environ. 2017; 603:785-92. [DOI:10.1016/j.scitotenv.2017.02.225] [PMID]
  21. Khalid S. Phytomonitoring of air pollution around brick kilns in Balochistan province Pakistan through air pollution index and metal accumulation index. J Clean Prod. 2019; 229:727-38. [DOI:10.1016/j.jclepro.2019.05.050]
  22. Shah K, Ul Amin N, Ahmad I, Ara G. Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust. Environ Sci Pollut Res Int. 2018; 25(23):23055-73. [DOI:10.1007/s11356-018-2309-3] [PMID]
  23. Javanmard Z, Kouchaksaraei MT, Hosseini SM, Pandey AK. Assessment of anticipated performance index of some deciduous plant species under dust air pollution. Environ Sci Pollut Res. 2020; 27(31):38987-94. [DOI:10.1007/s11356-020-09957-w] [PMID]
  24. Noor MJ, Sultana S, Fatima S, Ahmad M, Zafar M, Sarfraz M, et al. Retracted Article: Estimation of anticipated performance index and air pollution tolerance index and of vegetation around the marble industrial areas of Potwar region: bioindicators of plant pollution response. Environ Geochem Health. 2015; 37(3):441-55. [DOI:10.1007/s10653-014-9657-9] [PMID]
  25. Yoshimoto K, Ohsumi Y. Unveiling the molecular mechanisms of plant autophagy—from autophagosomes to vacuoles in plants. Plant Cell Environ. 2018; 59(7):1337-44. [DOI:10.1093/pcp/pcy112]
  26. Dayan J. Gibberellin transport. Annual Plant Rev online. 2018; 49. [DOI:10.1002/9781119312994.apr0533]
  27. Ogbonna C, Nwafor F, Ugbogu E. Physiochemical Properties and Anticipated Performance of Selected Plant Species in Lokpaukwu Quarry Site in Abia State, Nigeria. J Environ Pollut Hum Health. 2019; 7(1):7-14.
  28. Rai PK. Particulate matter tolerance of plants (APTI and API) in a biodiversity hotspot located in a tropical region: Implications for eco-control. Particul Sci Technol. 2020; 38(2):193-202. [DOI:10.1080/02726351.2018.1527800]
  29. Pathak RK, Tomar C, Mahajan S. Phytomonitoring of atmospheric pollution in road side perennial trees of Indore city (MP) India. Int J Adv Eng Technol. 2015; 7(6):1727.
  30. Karmakar D, Padhy PK. Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for green-belt development in urban industrial area. Chemosphere. 2019; 237:124522. [DOI:10.1016/j.chemosphere.2019.124522] [PMID]
  31. Rai PK, Panda LL. Dust capturing potential and Air Pollution Tolerance Index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: An Indo-Burma hot spot region. Air Qual Atmosphere Health. 2014; 7(1):93-101. [DOI:10.1007/s11869-013-0217-8]
  32. Bakiyaraj R, Ayyappan D. Air pollution tolerance index of some terrestrial plants around an industrial area. Int J Modern Res Rev. 2014; 2(1):1-7.
  33. Norouzi S, Khademi H, Cano AF, Acosta JA. Using plane tree leaves for biomonitoring of dust borne heavy metals: A case study from Isfahan, Central Iran. Ecol Indic. 2015; 57:64-73. [DOI:10.1016/j.ecolind.2015.04.011]
  34. Bahadoran M, Mortazavi SN, Hajizadeh Y. Evaluation of anticipated performance index, biochemical, and physiological parameters of cupressus arizonica greene and juniperus excelsa bieb for green-belt development and biomonitoring of air pollution. Int J Phytoremediation. 2019; 21(5):496-502. [DOI:10.1080/15226514.2018.1537251] [PMID]
  35. Zhang W, Zhang Y, Gong J, Yang B, Zhang Z, Wang B, et al. Comparison of the suitability of plant species for green-belt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system. Environ Pollut. 2020; 263:114615. [DOI:10.1016/j.envpol.2020.114615]
  36. Molnár VÉ, Simon E, Tóthmérész B, Ninsawat S, Szabó S. Air pollution induced vegetation stress-the air pollution tolerance index as a quick tool for city health evaluation. Ecol Indic. 2020; 113:106234. [DOI:10.1016/j.ecolind.2020.106234]
  37. Singh S, Rao D. Symposium on Air Pollution Control. Pennsylvania: ASTM; 1983.
  38. Pathak V, Tripathi B, Mishra V. Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban For Urban Green. 2011; 10(1):61-6. [DOI:10.1016/j.ufug.2010.06.008]
  39. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949; 24(1):1. [DOI:10.1104/pp.24.1.1] [PMID] [PMCID]
  40. Keller T, Schwager H. Air pollution and ascorbic acid. Eur J For Pathol. 1977; 7(6):338-50. [DOI:10.1111/j.1439-0329.1977.tb00603.x]
  41. Liu YJ, Ding H. Variation in air pollution tolerance index of plants near a steel factory: Implication for landscape-plant species selection for industrial areas. WSEAS Trans Environ Dev. 2008; 4(1):24-32.
  42. Prajapati SK, Tripathi B. Anticipated Performance Index of some tree species considered for green belt development in and around an urban area: A case study of Varanasi city, India. J Environ Manage. 2008; 88(4):1343-9. [DOI:10.1016/j.jenvman.2007.07.002] [PMID]
  43. Bora M, Joshi N. A study on variation in biochemical aspects of different tree species with tolerance and performance index. Bioscan. 2014; 9(1):59-63.
  44. Tsega YC, Prasad A. Variation in air pollution tolerance index and anticipated performance index of roadside plants in Mysore, India. J Environ Biol. 2014; 35(1):185-90.
  45. Tripathi A, Gautam M. Biochemical parameters of plants as indicators of air pollution. J Environ Biol. 2007; 28(1):127.
  46. Ogunkunle C, Suleiman L, Oyedeji S, Awotoye O, Fatoba P. Assessing the air pollution tolerance index and anticipated performance index of some tree species for biomonitoring environmental health. Agroforestry Syst. 2015; 89(3): 447-454. [DOI:10.1007/s10457-014-9781-7]
  47. Leghari SK, Akbar A, Qasim S, Ullah S, Asrar M, Rohail H, et al. Estimating anticipated performance index and air pollution tolerance index of some trees and ornamental plant species for the construction of green belts. Polish J Environ Stud. 2019; 28(3):1759-69. [DOI:10.15244/pjoes/89587]
  48. Ghafari S, Kaviani B, Sedaghathoor S, Allahyari MS. Assessment of Air Pollution Tolerance Index (APTI) for some ornamental woody species in green space of humid temperate region (Rasht, Iran). Environ Dev Sustain. 2021; 23(2):1579-600. [DOI:10.1007/s10668-020-00640-1]
  49. Sumangala H, Aswath C, Laxman R, Namratha M. Evaluation of Air Pollution Tolerance Index (APTI) of selected ornamental tree species of Bengaluru, India. Int J Pure App Biosci. 2018; 6(3):366-73. [DOI:10.18782/2320-7051.6382]
  50. Lohe R, Tyagi B, Singh V, Kumar TP, Khanna D, Bhutiani R. A comparative study for air pollution tolerance index of some terrestrial plant species. Glob J Environ Sci Manage. 2015; 1(4):315-24.
  51. Swami A, Bhatt D, Joshi P. Effects of automobile pollution on sal (Shorea robusta) and rohini (Mallotus phillipinensis) at Asarori, Dehradun. Himalayan J Environ Zool. 2004; 18(1):57-61.
  52. Kumar M, Nandini N. Identification and evaluation of air pollution tolerance index of selected avenue tree species of urban Bangalore, India. Int J Emerg Technol Comput Appl Sci. 2013; 4(5):388-90.
  53. Jyothi SJ, Jaya D. Evaluation of air pollution tolerance index of selected plant species along roadsides in Thiruvananthapuram, Kerala. J Environ Biol. 2010; 31(3):379-86.
  54. Madan S, Verma P. Assessment of air pollution tolerance index of some trees in Haridwar City, Uttarakhand. J Environ Biol. 2015; 36(3):645.
  55. Ubuoh E, Kanu C, Mpamah I. Assessment of Air Quality Status Using Pollution Standard Index in Udeagbala Industrial Area, Abia State, Nigeria. Int J Geogr Environ Manage. 2017; 3(3):47-57.
  56. Begum A, Harikrishna S. Evaluation of some tree species to absorb air pollutants in three industrial locations of South Bengaluru, India. J Chem. 2010; 7(S1):S151-S156. [DOI:10.1155/2010/398382]
  57. Gholami A, Mojiri A, Amini H. Investigation of the Air Pollution Tolerance Index (APTI) using some plant species in Ahvaz region. J Anim Plant Sci. 2016; 26(2):475-80.
  58. Allen Jr L, Boote K, Jones J, Jones P, Valle R, Acock B, et al. Response of vegetation to rising carbon dioxide: Photosynthesis, biomass, and seed yield of soybean. Global Biogeochem Cycles. 1987; 1(1):1-14. [DOI:10.1029/GB001i001p00001]
  59. Nayak A, Madan S, Matta G. Evaluation of Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API) of Some Plants Species in Haridwar City. Int J Enviro Rehabil Conserv. 2018; 9:1-7. [DOI:10.31786/09756272.]
  60. Aji MM, Adamu M, Borkoma MB. Determination of air pollution tolerance index of selected trees in selected locations in Maiduguri. Appl Res J. 2015; 1(7):378-83.