The optimization of Cu and Fe bioleaching from converter slag using Acidithiobacilus ferrooxidans

Document Type: Original Article

Authors

1 Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran

2 Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract

The main objective of this work was to assess the optimization of Fe and Cu bioleaching from converter slag using Acidithiobacillus ferrooxidans. Important parameters that contribute to the bioleaching process include initial pH, initial Fe2+ concentration and pulp density. In order to optimize these parameters, the response surface methodology (RSM) was applied. The maximum simultaneous Fe and Cu recovery yields were 95% and 100%, respectively. The optimum conditions were initial pH 1.8, initial density 1.4 g/100 mL and initial Fe2+ 7.3 g/L. The comparison between chemical leaching and bioleaching results showed that bioleaching improved the recovery yields of Fe and Cu by 26% and 33%, respectively. The modified shrinking core model was used to determine the rate-limiting step of the process. It was found that diffusion through the product layer and chemical reaction are the rate controlling steps.

Keywords


1.           Al-Malack M, Bukhari A, Al-Amoudi O, Al-Muhanna H, Zaidi T. Characteristics of Fly ash Produced at Power and Water Desalination Plants Firing Fuel Oil. International Journal of Environmental Research 2013; 7(2): 455-466.

2.            Yang J, Wang Q,Wang Q, Wu T. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger. Bioresource technology 2009; 100(1): 254-260.

3.            Mirazimi S,  Abbasalipour Z,  Rashchi F. Vanadium removal from LD converter slag using bacteria and fungi. Journal of environmental management 2015; 153: 144-151.

4.            Gupta  C.K, Krishnamurthy N. Extractive metallurgy of vanadium. Elsevier Science Publishers .Amsterdam, The Netherlands. 1992.

5.            Xin B, Jiang W,Aslam H,Khang K, Liu C,Wang R, et al. Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresource technology 2012; 106: 147-153.

6.            Rastegar  SO, Mousavi SM, Shojaosadati SA. Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans. Bioresource technology 2014; 167: 61-68.

7.         Marchioretto  MM,  Bruning  H,  Rulkens W. Heavy metals precipitation in sewage sludge. Separation science and technology 2005; 40(16): 3393-3405.

8.         Sadat  A.S,    Ahmadi A,   Zilouei H. Separation of Cu from dilute Cu–Ni–Co bearing bioleach solutions using solvent extraction with Chemorex CP-150. Separation Science and Technology 2016; 51(18): 2903-2912.

9.         Amiri F, Yaghmaei S,   Mousavi S. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresource technology. 2011; 102(2): 1567-1573.

10.       Gentina  J.C, Acevedo F. Application of bioleaching to copper mining in Chile. Electronic Journal of Biotechnology 2013; 16 (3):1-14.

11.       Park J, Han U, Lee E, Choi U, Yoo K,Song Y, et al. Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Separation and Purification Technology 2014; 133: 291-296.

12.         Bharadwaj  A, Ting Y. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. Bioresource technology 2013; 130: 673-680.

13.         Bajestani  M I,   Mousavi S,   Shojaosadati S. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Separation and Purification Technology 2014; 132: 309-316.

14.         Biswas  S, Chakraborty S, Chaudhori MG, Banerjee P, Mukherejee S, Dey R. Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids. Journal of Chemical Technology and Biotechnology 2014; 89(10): 1491-1500.

15.         Rastegar  SO, Mousavi SM, Shojaostadi SA, Sheibai S. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology. Journal of hazardous materials 2011; 197: 26-32.

16.         Rastegar  SO, Mousavi SM, Rezaei M, Shojaostadi SA. Statistical evaluation and optimization of effective parameters in bioleaching of metals from molybdenite concentrate using Acidianus brierleyi. Journal of Industrial and Engineering Chemistry 2014; 20(5): 3096-3101.

17.         Gerayeli  F, Ghojavanfd F, Mousavi SM, Yaghmaei S, Amiri F. Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Separation and Purification Technology 2013; 118: 151-161.

18.         Karamanev  D, Nikolov L, Mamatarkova V. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Minerals Engineering 2002; 15(5): 341-346.

19.         Amiri  F, Mousavi SM, Yaghmaei S, Barati M. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochemical engineering journal 2012;  67: 208-217.

20.         Chen  SY, Lin P L.  Optimization of operating parameters for the metal bioleaching process of contaminated soil. Separation and Purification Technology. 2010; 71(2): 178-185.

21.      Hocheng H Su  C,  Jadhav  U.  Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere. 2014; 117: 652–657.

22.       Panda  S,  Mishra S, Rao DS, Pardhan N, Mohapatra U, Angadi S, et al. Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies. Korean J Chem Eng 2015; 32: 667–676.