Fabrication, characterization, and microscopic imaging of Fe2O3-modified electrospun nanofibers

Document Type: Original Article

Authors

1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran

2 Department of Environmental Health Engineering, Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran

3 Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

Abstract

This study explored the fabrication, characterization, and microscopic imaging of highly porous electrospun nanofibers based on pure and Fe2O3 nanoparticle modified polyacrylonitrile (PAN) fibers. The desired electrospinning mixture comprising polymer and nanoparticles in dimethyleformamide, was prepared. During electrospinning, the precursor solution was injected using a syringe pump. The empirical parameter influences, including nanoparticles dose, polymer weight percentage, and thickness as applied polymer syringe, were studied on the product morphology and uniformity. The products were analyzed by Fourier transform infrared (FT-IR) spectrophotometer, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results demonstrate that changes in the investigated empirical parameters cause fiber morphology variations and uniformity. Therefore, a strong interaction exists between Fe2O3 and PAN. In general, addition of nanoparticles to PAN solution resulted in a decrease in the average fiber diameter compared to pure PAN.

Keywords


1.         Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination 2015;356:15-30.

2.         Ramakrishna S, Fujihara K, Teo W-E, Lim T-CH , Ma Z. Basics Relevant to Electrospinning, in An Introduction to Electrospinning and Nanofibers. Singapore. World Scientific Publishing Co. Pte. Ltd; 2005. 

3.        Li D, Babel A, Jenekhe SA, Xia Y. Nanofibers of conjugated polymers prepared by electrospinning with a two‚Äźcapillary spinneret. Advanced Materials 2004;16(22):2062-6.

4.         Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology 2003;63(15):2223-53.

5.         Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Advanced materials 2004;16(14):1151-70.

6.         Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition 2007;46(30):5670-703.

7.         Reneker D, Yarin A, Zussman E, Xu H. Electrospinning of nanofibers from polymer solutions and melts. Advances in applied mechanics 2007;41:43-346.

8.         Greiner A, Wendorff J. Functional self-assembled nanofibers by electrospinning.  Self-Assembled Nanomaterials I: Springer; 2008. p. 107-71.

9.         Wendorff JH, Agarwal S, Greiner A. Electrospinning: materials, processing, and applications. John Wiley & Sons; 2012.

10.       Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced drug delivery reviews 2009;61(12):1033-42.

11.       Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Progress in polymer science 2010;35(7):868-92.

12.       Homaeigohar S, Elbahri M. Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 2014;7(2):1017-45.

13.       Pesetskii SS, Bogdanovich SP, Myshkin NK. Tribological behavior of nanocomposites produced by the dispersion of nanofillers in polymer melts. Journal of Friction and Wear 2007;28(5):457-75.

14.       Nie G, Li Z, Lu X, Lei J, Zhang C, Wang C. Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Applied Surface Science 2013;284:595-600.

15.       Fuenmayor CA, Lemma SM, Mannino S, Mimmo T, Scampicchio M. Filtration of apple juice by nylon nanofibrous membranes. Journal of Food Engineering 2014;122:110-6.

16.       Homaeigohar SS, Buhr K, Ebert K. Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. Journal of Membrane Science 2010;365(1):68-77.

17.       Homaeigohar SS, Elbahri M. Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes. Journal of colloid and interface science 2012;372(1):6-15.

18.       Zheng Y, Cheng Y, Wang Y, Bao F, Zhou L, Wei X, et al. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. The Journal of Physical Chemistry B 2006;110(7):3093-7.

19.       Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International 2004;53(11):1851-9.

20.       Ji L, Saquing C, Khan SA, Zhang X. Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers. Nanotechnology 2008;19(8):085605.

21.       Zhang D, Karki AB, Rutman D, Young DP, Wang A, Cocke D, et al. Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer 2009;50(17):4189-98.

22.       Guo Z, Henry LL, Palshin V, Podlaha EJ. Synthesis of poly (methyl methacrylate) stabilized colloidal zero-valence metallic nanoparticles. J. Mater. Chem 2006;16(18):1772-7.

23.       Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, et al. Preparation and characterization of a nanoscale poly (vinyl alcohol) fiber aggregate produced by an electrospinning method. Journal of Polymer Science Part B: Polymer Physics 2002;40(13):1261-8.