
Introduction
Soil has a key role in the production and recovery cycle. 
Therefore, soil contamination induces disorder in the 
production and recovery process of material in nature and 
disorder in the biological process of soil organisms and 
plants. Soil contamination with heavy metals (HMs) is an 
environmental problem on a global scale which tends to 
be more serious with the rapid growth of industrialization, 
urbanization, and population, and usage of different 
organic and inorganic fertilizers without paying attention 
to their deleterious effects on the nature.1,2 Anthropogenic 
activities, such as industrial and traffic emissions and 
various land-use practices may increase HMs loading 
into different ecosystems.3 Because soil and water are 
the first links of any food chain, depletion of HMs in 
agricultural soils (through the application of different 
inputs and wastewater irrigation) not only contaminates 
soil and water but also affects the quality and safety food. 
The consumption of polluted foods can lead to various 

diseases such as upper gastrointestinal cancer.4 Natural 
and critical concentrations of HMs in natural water, 
sediments, and soil are shown in Tables 1 and 2. Due to 
their non-biodegradable nature, long biological half-lives, 
and potential to accumulate in different parts of the body, 
these metals are very harmful.5 Because they are soluble 
in water, most of these HMs are very toxic to humans.6 
Even small quantities of HMs have harmful effects on 
human and animals which is due to the lack of an efficient 
mechanism for their removal from the body. Nowadays, 
HMs are omnipresent because of their excessive use in 
industrial applications (Table 1). 

Excessive uptake and chronic exposure to HMs may 
result in different serious human diseases including cancer 
which is the most common cause of death in developed 
countries.7-9 In fact, HMs can not only act as carcinogens 
but also as co-carcinogens, which activate certain 
chemical compounds.10 Therefore, the current study aims 
to investigate: (i) The potential effects of human activities 
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Abstract
As the foundation of nutritious foods lies in the soil, the consumption of crops grown in 
contaminated soils may pose an elevated risk of health issues through the soil-plant-human 
pathway. The impact of heavy metals (HMs) and metalloids on the physiological and biochemical 
responses of plants can have adverse effects on both growth and yield. The excessive accumulation 
of these substances in plant tissues poses a significant challenge to public health. HMs possess 
the capability not only to function as carcinogens but also to act as co-carcinogens, thereby 
activating specific chemical compounds. According to the World Health Organization (WHO) 
reports, the target values, representing the desirable maximum concentrations of HMs in the 
soil, follow the order: Cr > Pb > Zn > Cu > Ni > Cd. This implies that Cd poses the highest potential 
risk, given its target value of 0.8 mg/kg, while Cr carries the lowest potential risk, with a target 
value of 100 mg/kg. Various agricultural management practices are recognized as significant 
pathways that induce the accumulation of metals in the soil and the surrounding environment. 
Hence, understanding the origin and status of HMs in the environment, along with assessing 
their potential risks and developing strategies to mitigate these risks, becomes crucial. This study 
aims to evaluate different facets of the soil-human health continuum concerning potentially toxic 
metals.
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on metal loadings in soil; (ii) The assessment of potential 
health risks associated with HMs; (iii) The examination 
of the distribution of HMs in various environments and 
different foods under diverse agricultural managements; 
(iv) An exploration of the pathways through which these 
metals enter the human body, as well as an analysis of the 
diseases or disorders they may cause in humans.

Historical Background of Soil and Human Health
Authors made an attempt to analyze the different areas 
of soil and human health research published through 
varied databases including Web of Science, Google 
Scholar, Springer Link, and Wiley-Blackwell databases 
using the keywords such as soil health, soil and human 
interactions, soil-toxic metals-human, and soil health-
human health. The results showed that 32 368 documents 
were published during 1999-2022, represented by 17013 
research papers, 6445 review papers, 6267 book chapters, 
76 encyclopedias, and 2563 publications in form of other 
documents. In the dataset analyzed, a substantial majority 
of 16 232 publications were dedicated to exploring the 
environmental aspects linking soil health to human 
health. This was followed by a smaller proportion of 5118 
publications focusing on agricultural/biological sciences. 

The remaining publications covered various other subject 
areas. These findings underscore a significant emphasis 
on understanding the potential health risks posed by 
naturally enriched HMs to populations exposed through 
soil, drinking water, and products derived from these 
soils. In alignment with the primary objectives of our 
review, which centered on elucidating the correlation 
between soil health and human health, we systematically 
identified 87 research articles and 14 review papers. This 
bibliometric analysis enabled the discernment of gaps 
in soil research, particularly emphasizing the interplay 
between soil characteristics and human health outcomes, 
thus contributing to the discourse on public health 
concerns (Table 3).

Relations Between Soil Health And Human Health 
Soil is both a sink and a source of different HMs.26 It is 
widely acknowledged that mineral elements present in 
soils can exert either positive or negative effects on human 
health, either directly or indirectly.27,28 According to 
Brevik and Slaughter,28 human health is influenced by soil 
chemical pollution, micro-and macro-organisms of soil, 
and soil nutrient supply. The level of the known essential 
elements in humans can be deficient, adequate, or toxic, 

Table 1. Concentration of HMs in natural water, sediments and their final limit in unpolluted soil (Prasad 2004)

Metal
Natural Water (µg/g) Soil (µg/g) Sediments (µg/g)

Sea Water Fresh Water Loam Sand Lake Sea

Cd 0.01-0.07 0.07 1 1 0.14-2.5 0.02-0.43

Cr 0.08-0.15 0.5 30 15 7-77 11-90

Co 0.04-0.1 1.8 15 5 - 0.1-74

Hg 0.2 ˂5 0.15 0.15 0.004-0.2 0.001-0.4

Ni 0.001-0.015 0.2 1 1 34-55 2-225

Pb 0.01-0.62 10 50 50 14-40 7-80

Table 2. The concentration (mg/kg) of some HMs in agricultural soils of different regions/countries 

Location As Cr Pb Ni Zn Cd Cu Ref.

Austria - 54 30 35 100 0.4 35  11

Czech Republic - 70 50 30 80 0.2 25  12

NE Morocco 5.3 - 24.4 - 26.8 0.3 15.9  13

Colombia - - 0.012 14.1 107 0.008 118.1  14

Mongolia 3.33-14.17 13.04-60 15-46.66 12.73-18.60 52.3-114.1  15

Catalonia, US 10.4 21.6 21.7 20.7 56.1 0.261 15.4  16

Jin-Qu Basin, China - 54.6 25.6 22.3 69  17

China 9.2 54 24 23 67 0.074 -  18

Beijing, China - 17.9-21.9 1.97-3.1 1.92-25.53 67.8-79.6  19

European Union 5 100 60 50 200 1 100  20

European average value 11.6 94.8 32 37 68.1 0.28 17.3  21

World average value 6.83 59.5 27 29 70 0.41 38.9  21

National background value in soil 0.1-55 1-3000 17 0.2-5000 10-100 0.1-1 2-50  22

The natural limit in soil - 1-1000 (100) 2-200 (10) 5-500 (40) 10-300 (50) 0.01-0.7 (0.06) 2-100 (30)  23

The natural limit in soil 0.1-40 5-1500 2-300 2-750 0.01-2  24

Target value of soil* - 100 85 35 50 0.8 36  25

*Target values are specified to indicate desirable maximum levels of elements in unpolluted soils.
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depending upon the concentrations of these elements in 
the soil and the matter of dose or exposure.27 Additionally, 
certain elements such as lead (Pb), mercury (Hg), arsenic 
(As), and cadmium (Cd) lack any known biological benefit 
for human health. Instead, they are toxic even at minimal 
concentrations.27,29,30 Essential elements such as zinc (Zn), 
manganese (Mn), copper (Cu), nickel (Ni), and cobalt 
(Co) are vital for human health, but they can become toxic 
at elevated concentrations.31

Cd, Cr, Pb, and As have been identified as substances 
capable of inducing carcinogenic health risks, as classified 
by the International Agency for Research on Cancer 
(IARC 2012). Additionally, Pb, Cu, Zn, Iron (Fe), As, Cd, 
Cr, Al, and Co are recognized as HMs associated with the 
estimation of non-carcinogenic risks.32 

Concern over soil pollution by HMs has escalated in 
recent decades due to their persistent nature, toxicity, 
propensity for bioaccumulation, and resistance to 
biodegradation.33,34 Furthermore, there is currently no 
known homeostasis mechanism for HMs. According to 
reports, human health experiences significant setbacks 
when soils contain excessive levels of these toxic metals.35 

The concentration of HMs in various soils around the 
world varies widely and is closely associated with the 
differing strengths of lithologic and anthropogenic 
sources. These sources include urban development, mine 
tailings, areas of oil and gas extraction, sites of high metal 
waste disposal, and other locations where anthropogenic 
contamination is more prevalent.26,27,31,33,34,36-39 

There are two pathways through which humans can be 
exposed to HMs (Figure 1): (i) the soil–human pathway, 
also known as the direct pathway, and (ii) the soil–food 
crop–human pathway, commonly referred to as the 
indirect pathway.31 The direct pathway encompasses 
dermal contact (skin absorption or penetration), ingestion 
of soil, and inhalation of dust (respiration).27,28,31,40,41 This 
pathway is influenced by factors such as the rates of soil 
and dust intake, concentrations of HMs in soil and dust, 
body weight, duration of exposure, and the bioavailability 
factor within the human body.42,43 Given that nutritious 
food originates from the soil, consuming vegetables grown 
in contaminated soil (soil-plant–human pathway)44,45 
can potentially elevate the risk of health issues. The 
rapid growth in population and the consequent rise in 

Table 3. Bibliometric Analysis of Soil Health - Human Health Research (Period: 1999-2022)

Year

Distribution Subject Areas

Research Papers Review Papers Othersa Agricultural And 
Biological Sciences

Environmental 
Science

Othersb

2022 1931 889 982 517 2087 1198

2021 2927 1450 1247 814 2960 1850

2020 2137 777 890 495 1989 1320

2019 1685 562 842 464 1588 1037

2018 1304 479 591 369 1292 713

2017 1117 400 499 390 931 291

2016 915 307 390 292 792 528

2015 699 255 399 262 552 539

2014 622 192 396 203 586 421

2013 513 143 390 195 486 365

2012 443 136 308 125 426 336

2011 397 125 228 141 374 235

2010 334 98 211 115 331 197

2009 328 122 231 126 308 247

2008 288 90 168 116 276 154

2007 240 105 209 73 229 252

2006 198 46 110 52 173 129

2005 177 58 171 66 184 156

2004 175 40 141 80 166 110

2003 154 50 154 64 164 130

2002 123 43 111 51 123 103

2001 90 36 97 42 75 106

2000 117 23 73 30 77 106

1999 99 19 72 40 63 96

Total 17013 6445 8910 5122 16232 10619
a Mini reviews, Encyclopedia, Book chapters, Conference abstracts, Case reports.
b Chemical Engineering, Energy, Earth and Planetary Sciences, Biochemistry, Genetics and Molecular Biology.
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food demand over the years have led to the cultivation 
of crops on polluted or contaminated lands, including 
areas near industries and mining sites.46-52 Moreover, the 
indiscriminate use of agrochemicals such as pesticides, 
fertilizers, and insecticides, along with the utilization 
of sewage sludge and untreated industrial wastewater, 
further exacerbates this issue.19,53-56 Increasing evidence 
shows that the cultivation of crops on contaminated land 
can potentially result in the transfer of HMs from soil 
to the edible parts of a food crop.57 Moreover, another 
indirect way by which HMs can adversely affect human 
health through the food web is toxic to macro-and micro-
organisms (fungi and bacteria), which are beneficial 
for plants and involve nutrient cycling in soils.58,59 Soil 
organisms have both direct and indirect effects on the 
sustainability, quality, and security of food systems that 
subsequently influence human health and nutrition.28 
Hence, HMs can threaten the health of wildlife and 
humans through the food chain. Several systems including 
the blood, liver, brain, kidneys, and lungs can be influenced 
by HM accumulation in the body.30,35 Recently, reviews 
by Alengebawy et al,30 Aliasgharpour,29 and Rai et al57 
summarize the impact of HMs on human health and the 
mechanism of absorption of HMs by humans. The HMs 
and the methods by which they enter the body of living 
creatures has been presented in Table 4.

In the direct pathway, several indices are used to provide 
information on the amount of soil contamination and 
its potential effect on human and environmental health 
risks.69,70 For example, HMs pollution degree in soils 
can be investigated in terms of the “enrichment factor 
(EF)”; the “geo-accumulation index,” the contamination 
factor (CF), and the potential ecological risk index 
(PERI).56 The conventional approach in risk assessment 
of metal contamination involves comparing current 
concentrations with critical thresholds at which adverse 
effects are anticipated. The permissible concentrations for 
heavy HMs vary significantly depending on land use and 
can differ markedly between countries.71 If the control level 

is exceeded, further measures must be implemented to 
identify and manage potential risks. Additionally, several 
indices have been developed to provide insights into the 
potential impact of soil contamination on human health 
risks. These include the average daily dose (including 
ingestion [ADDing], inhalation [ADDinh], and dermal 
contact [ADDderm] in mg/kg/d), the non-carcinogenic 
hazard quotient (HQ; which is the ratio of the ADD of a 
heavy metal to the corresponding RfD), the hazard index 
(HI, which is the sum of the HQs from all three pathways), 
and carcinogenic risk (CR, which is estimated by the total 
value of cancer risks for each exposure pathway (ADD) 
using the carcinogenicity slope factor).15,32,34,45 The hazard 
index (HI) less than 1 indicates that the HMs in soil do 
not pose a risk to human health. The acceptable threshold 
value of the cancer risk is 1 × 10-4 whilst the tolerable CR 
for regulatory purposes is in the range of 1 × 10-6 -1 × 10-4 
(US Environmental Protection Agency.43 Also, the World 
Health Organization (WHO) has set the permissible limits 
of their concentrations (mg/kg) in soil (Table 2).25 Metals 
with high permissible limits are considered as safe.30 These 
indices help understanding the status of soil contamination 
and exposure risks for humans. More details about these 
indices can be found in literature.15,32,34,45 Table 5 provides 
an overview of some studies conducted on the relationship 
between soil pollution and human health.

In the indirect pathway (soil-food crops-human), 
analogous to the direct pathway, various indices are 
employed to offer insights into potential risks to human 
health arising from the consumption of contaminated 
food crops. For instance, the non-carcinogenic risk (target 
hazard; THQ) and target carcinogenic risk (TCR) of HMs 
from the consumption of food crops72,73 are estimated 
similarly to the method used for soil. Additionally, the 
joint FAO/WHO Expert Committee on Food Additives 
and the Ministry of Health of the People’s Republic 
of China have established the maximum permissible 
levels of HMs (mg/kg) in various food crops for human 
consumption. Table 6 presents a review of research 

Figure 1. Pathways by Which HMs in Soil Particles Move Into the Body

32 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Pathways by Which HMs in Soil Particles Move Into the Body.

Soil–human pathway  

(Direct pathway) 

Soil–food crop–human 
pathway  

(Indirect pathway) 

Dermal contact  
(Skin absorption or penetration) 

(Direct pathway) 
Ingestion of soil 

Inhalation of dust  
(Respiration)  

Toxic to macro- and micro-organisms 
involve in nutrient cycling in soils 

  

 
Adverse effects on quality of food that 
is derived from soil-basal agriculture 

 

Human health 



J Adv Environ Health Res, 2024, Volume 12, Issue 290

Mousavi et al

investigating the impact of soil pollution on human 
health through food consumption. Indeed, according 
to Sir Albert Howard, past president of the Soil Science 
Society of America, “declining soil fertility, due to a lack 
of organic material, major elements, and trace minerals, 
is responsible for poor crops and in turn for poor people. 
In addition to the adverse effects of high levels of HMs 
in soil on human health, eutrophic reservoirs may 
directly and indirectly expose humans to toxins.74,75 The 
eutrophication of water is a complex process that occurred 
by stimulating the growth and flowering of certain types 
of algae, distributing the quality and condition of natural 
waters. The primary cause of eutrophication is the 
enrichment of the water body with nutrients originating 
from agriculture or sewage treatment.74 In addition 
to the deleterious impact of water eutrophication on 
water quality, this phenomenon may be a threat to the 
health of the exposed animal and human populations74 
and contribute to the spread of gastrointestinal and 
dermatological diseases. In recent decades, this has 
become a global environmental problem.75,76 Harmful 
algal blooms represent one of the major ecological health 
risks associated with eutrophication.76 Some cyanobacteria 
have the capacity to produce harmful materials, such as 
toxins77,78 and flavor substances,79,80 which are potential 
hazards for both human and wildlife health.78,81 People 
may be exposed to toxins through the consumption of 
drinking water from a eutrophic reservoir, direct contact 
with this reservoir, or the inhalation of evaporation from a 
mentioned reservoir.74,75

Status of HMs in Different Food Diets and Health Risks
Due to their non-biodegradable nature, HMs exhibit high 
persistence, leading to their easy accumulation in the 
environment at toxic levels, thereby posing significant 
risks to human health.5 Several factors can influence the 
accumulation of HMs in plants, subsequently impacting 
food chains. These factors include the type of plant/
vegetable, soil pH, soil particle size, organic carbon 
content, cation exchange capacity of the soil, root 
exudation, and other physicochemical parameters.1 The 
type of HMs, their molecular form, interconversion of 
valences, and other factors determine how deleterious 
they can be.6 Oral intake,100 inhalation of volatiles and 

fugitive particulates,101 and dermal contact102 are the most 
important ways of human exposure to HMs. 

Water and food are two main sources from which we 
uptake essential nutrients. Water is considered as a vital 
substance in the environment,5 and its contamination 
with HMs is a worldwide environmental problem6 which 
has become increasingly important since the 1990s.92

Exposure to HMs through water continues to pose a 
health threat to populations in certain less-developed 
countries with inadequate water treatment facilities.103 
Plants irrigated with polluted waters may accumulate 
toxic levels of HMs,104,105 as illustrated in Figure 2, which 
demonstrates the influence of water properties on 
determining the fate of HMs.

Marine organisms inhabiting coastal areas affected by 
industrial wastewater discharge often exhibit elevated 
levels of toxic elements.106 Furthermore, certain foods 
possess specific chemical structures or matrix properties, 
such as texture, making them more susceptible to 
contamination by various elements.105

Vegetables, being a dietary staple for many worldwide, 
have the capacity to uptake and accumulate significant 
amounts of HMs in their edible parts,107 posing potential 
health risks to both animals and humans.19 Roggeman et 
al108 reported that 40% of the livers and 85% of the kidneys 
examined in cows exceeded the European limit for Cd. 
They recommended that an individual weighing 70 kg 
should not consume more than 150 g of cow meat per day 
due to chromium (Cr) levels in the muscles.

Leung et al109 evaluated HMs/metalloid concentration 
in edible fish species tissue in the Pearl River Delta, China. 
The researchers reported the overall concentrations of 
these metals (mg/kg, wet weight) in the fish muscles: As 
ranged from 0.03 to 1.53, Pb ranged from 0.03 to 8.62, 
Cd ranged from 0.02 to 0.06, Ni ranged from 0.44 to 9.75, 
and Cr ranged from 0.22 to 0.65. To mitigate human 
health risks associated with both acute and chronic food 
intoxication, they recommended regular determination of 
HM concentrations in various fish species in the future.

Foodstuffs and drinking water consumed by residents 
in rural areas are usually produced locally, suggesting 
that residents living in e-waste areas have a great 
potential for exposure to HMs.110 Elevated body loadings 
of HMs have been recorded in children and recycling 

Table 4. HMs and the Methods by Which They Enter the Body of Living Creatures 

Type of HMs The Source or Method of Entry Reference(s)

Pb, Cd, Ni, Cr, As, Cu, Zn Organic fertilizers (MSW, SS, etc)*  60-63

Hg, Pb, Cd, Ni, Cr, Co, Cu, Zn Wastewater  3, 64

Cd, As, Pb, Ni, Cr Chemical fertilizers (especially phosphorus fertilizers)  1, 65

Cr, Pb, As, Ni, Cu, Zn, Hg, Fe, Mn Weathering, erosion of bedrocks, volcanic activities and atmospheric deposition  7,66

Cu, Zn, Fe, Mn, Cd, Pb, Co, Ni, As Herbicides, insecticides and pesticides  30,64

As, Cd, Cr, Ni, Co, Cu, Hg, Pb, and Zn
Industrial activities, coal and fuel combustion, vehicle emissions, metal plating, fertilizer production, 
mining metallurgy, battery manufacturing and textile dyeing 

 67

Cr, As, Pb, Hg, Ni and in particular Cd Cigarette and tobacco smoking, chronic alcohol consumption  9,68

* Municipal solid waste compost and sewage sludge.
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Table 5. Literature Review of the Soil Contamination With Toxic Metals and Related Health Risk Assessment

Location
Depth
(cm) 

Statistics
HMs Concentration 

in Soils (mg/kg)

The Assessment 
of Heavy Metal 

Contamination in Soils 
Health Risk Assessment (Adult)

References

Igeo HI CR

Isfahan, Iran 0-5 Mean

As: 16
Cd: 2.17
Co: 13
Cr: 81
Cu: 93
Ni: 62

Pb: 180
Zn: 470

As: -.08
Cd: 0.32
Co: -0.99
Cr: -1.45
Cu: 0.24
Ni: -1.05
Pb: 1.64
Zn: 1.33

For all metals
 < 1

As: 6.13 × 10−5

Cd: 1.09 × 10−4

Cr: 7.99 × 10−5

Ni: 9.85 × 10−5

Pb: 1.17 × 10−4

 82

Neyshabur, Iran 0-20 Mean

As: 8.84
Cd: 1.9

Cr: 37.66
Ni: 15.77
Pb: 57.33

As: 1
Cd: 0.59
Cr: 3.35
Ni: 3.45
Pb: 2.16

For all metals
 < 1

For all metals
 < 10-6

 83

Pahang, Malaysia 0-15

Pb: 32-73
Cu: 68-166
Zn: 93-116

Fe: 68200-128550
Cd: 0.063-0.42
Cr: 6.94-9.34

Ni: 1.45—4.36
Co: 30-108
As: 2.05-5

-
For all metals

 < 1

Pb: 1.06 × 10−7

Cd: 4.84 × 10−8

Cr: 4.57 × 10−8

AS:4.42 × 10−7

 84

Hyderabad, India 5-15 Range

As: 4.4-796
Cr: 9.7-599
Cu: 7.9-184
Ni: 10.2-130
Zn: 24-879

As: -2.1 to 0.16
Cr: -0.56 to 0.87
Pb: 0.1 to 1.96

Ni: -0.29 to 0.81
Zn: -0.47 to 1.09

multi-elemental risk: 
0.1-0.37 

multi-elemental risk: 
1.7 × 10−6-3.1 × 10−4  85

A peri-urban area in 
southeast China

Mean 

Cr: 62-78
Cd: 1.11-1.68
Hg: 0.26-0.58

As: 17-48
Pb: 134-190

multi-elemental risk 
dermal: 1.6

ingestion: 0.31
-  86

Liaoning, Northeast 
China

0-10 Mean

Cr: 69.9,
Cd: 0.86,
Pb: 45.1,
Zn: 213,

Cu: 52.3, Ni: 33.

Cr: -0.26
Cd: 2.56
Pb: 0.29
Zn: 0. 69
Cu: 0.39
Ni: -0.12

For all metals
 < 1

Cr: 4.74 × 10−7

Cd: 8.75 × 10−10

Ni: 4.54 × 10−9

 87

urbanized area of 
Dongguan, China

0-20 Range

As: 1.20-128
CO: 2.1-64.6
V: 22.6-768

Cd: 0.018-1.94
Pb: 3.4-9149

- for V, Co, As > 1

As
CRing:2.34 × 10−5;

CRdermal: 2.29 × 10−6

CRinh: 1.51 × 10−6

V
CRinh > 10−6

CO
CRinh > 10−6

 88

Riyadh and Mahad 
AD’Dahab, 
Netherland

0–3

Cd: 0.0-0.395
Cr: 1.49-31.4
Ni: 0.0-23.8

Pb: 1.28-22.2

Cd: 0
Cr: -7 to -2
Ni: -5 to 0
Pb: -5 to 0

For all metals
 < 1

Cr: 6.79 × 10−6-2.25 × 10−5

Pb: 5.48 × 10−10-1.81 × 10−7
 89

Pearl River Delta 
urban agglomeration 
of China

0-20 Mean

Cd: 0.27 ± 0.39
Cr: 51.78 ± 33.62
Pb: 47.27 ± 30.58
Hg: 0.26 ± 0.40
As: 13.0 ± 14.22

-
For all metals

 < 1
-  73

Mongolia 0-10
Range of 
Mean

As: 3.33-28
Pb: 18 -43
Cr: 17-66
Ni: 20-29
Zn:67-155

As: -0.67-0.84
Cr: -1.1 to -0.46

Pb: -1.91 to -0.69
Ni: -0.28 to -0.08
Zn: -0.78 to -0.02

For all metals
 < 1

As: 10-10 × (0.125-2.54)
Cr: 10-10 × (0.551-4.58)

Pb: -

 15

Sialkot, Pakistan 5-60

Cr: 65-535
Mn: 260-410
Cu: 30-125
As: 0.5-2.1
Cd: 0.1-1.0

Hg: 0.005-0.045
Pb: 17-55

Cr: 1.14
As: 1.19
Cd: 1.02
Pb: 0.98

For all metals
 < 1

Cr: 7.514 × 10−5

As: 1.717 × 10−6

Cd: 2.006 × 10−7

Pb: 1.914 × 10−7

Mn: 2.075 × 10−3

Cu: 1.317 × 10−3

Hg: 5.981 × 10−5

 34

Jin-Qu Basin, China 0-20
Cd: 0.06-1.68
Pb: 5.0-108.5
Cr:2.8-157.3

-
Cd: 0.918
Pb: 0.394
Cr: 0.001

-  17

Kermanshah, Iran 0-20 Mean

Zn: 75
Cu: 41
Ni: 131
Cr: 79

 < -1 < Zn < 1
Cu≈1

2 < Ni < 3
0 < Cr < 1 

For all elements < 1
Ni: 1.77 × 10−4

Cr: 5.83 × 10−5
 90

Igeo: Geo-accumulation index; HI: Hazard index; CR: Cancer risk.
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Table 6. A Literature Review on Contamination of some Food Crops With Toxic Metals and Related Health Risk Assessment

Location Crop
HMs in Soil 
(mg/Kg)

HMs In Food Crops 
(mg/kg)

Health Risk Assessment (Adult)*

Interpretation

R
ef

er
en

ce
s

THQ TTHQ TCR

Zarrinshahr 
and 
Mobarakeh, 
Iran

Wheat grain, 
rice grain, onion 
bulbs

Cd: 1.85
Fe: 35894
Ni: 64.5
Pb: 38

Cd: 0.25
Fe: 55.7
Ni: 1.8
Pb: 1.8

Cd: 2.24
Pb: 4.14
Ni: 0.74
Fe: 0.8

- -

Soil contamination with 
Cd, Pb, and Ni and 
high health risks for the 
population due to the 
consumption of Pb and 
Cd contaminated food 
crops were recorded.

 91

peri-urban 
area in 
southeast 
China

Tea, Rice, 
vegetable

Cr: 62 (tea)-78 
(upland)
Cd: 1.11 
(paddy)-1.68 
(upland)
Hg: 0.26 (tea)-
0.58 (upland)
As: 17 (tea)-48 
(upland)
Pb: 134 (tea)-
190(paddy)

Cr: 0.31 (veg.)-2.25 
(tea)
Cd: 0.14 (veg.)-
0.51(tea)
Hg: 0.01(veg.)-
0.08(tea)
As: 
0.08(veg.)0.35(rice)
Pb: 0.18(rice)-
1.12(tea)

-
 < 0.05 (tea)- 
10.44 (rice)

-

The health risk 
was related to food 
consumption and the 
order of health risk 
of different cropping 
systems was as follows: 
rice (10.44) > vegetable 
(2.86) > tea (0.05).
As, Cd, and Cr were 
identified as main 
contributors to human 
health risks.

 86 

Pakistan food crops

Cr: 31.65 
-61.65
Ni: 30.05 -64.3
Mn: 18.33-
66.78
Pb: 11.50 – 90
Cd: 7.13 -11.13 

Cr: 1.46–6.08
Ni: 3.36–6.40
Mn: 14.89-201.26
Pb: 22.41–40.85
Cd: 1.18–3.81

Cr: 0.0008-
.0033
Ni: 0.14-0.26
Mn: 0.086-1.2
Pb: 5.2-9.4
Cd: 0.95-3.1

- -

Irrigation with 
wastewater plays a vital 
role in accumulation 
HMs (especially Pb, Cd 
and Mn) in food crops.

 92

Cd: 0.52–0.93, 
Pb: 13.6–27.3, 
Cr: 10.0–
21.8, Zn: 
44.4–88.5, Cu: 
11.9–30.3, and 
Ni: 14.7–34.5 

Cd: 0.17 (bean)-0.41 
(Cabbage)
Pb: 0.26 (bean)-0.54 
(Cabbage)
Cr: 0.51 (bean)-2.51 
(green pepper)
Zn: 2.07 (bean)-14.4 
(Cabbage)
Cu: 1.12 (bean)-2.84 
(Cabbage)
Ni: 0.28 (bean)-1.09 
(Cabbage)

for all HMs
 < 1

0.028(bean)-
0.071 
(cabbage)

-

The highest and lowest 
metal pollution index 
were respectively 
recorded for cabbage 
and. The hazard index 
of the studied vegetables 
was < 1; therefor, their 
consumption is unlikely 
to pose health risks to 
the target population.

Potosı´, 
Bolivia

Potato tuber

As: 13-540
Cd: 2-17
Pb: 33-570
Zn: 100-3500

As: 1-9
Cd:0.1-1
Pb: 0.9-4
Zn: 78-170

As: 4.3-34.2
Cd: 1.2-15
Pb: 0.3-1.1
Zn: 0.3-0.8

- -

THQ were increased for 
As and Cd among adults 
in nearly all of the 
mining-impacted areas.
Only one mining-
impacted area had a Pb 
adult HQ for potatoes 
above 1.

 93

Enyigba, 
southeastern 
Nigeria

Vegetable, tuber

As: 1.47-5.22
Cd: 0.4-1.57
Pb: 132-2314
Mn: 788-1389
Zn: 134-273

As: 0.2-0.4
Cd: 0.025-0.55
Pb: 0.26-138
Mn: 3.5-450
Zn: 8.46-99.9

As: 0.35-0.7
Cd: 0.01-0.3
Pb: 0.03-18.08
Mn: 0.05-7.15
Zn: 0.01-0.17

- -
Mn and Pb expose the 
local consumers to high 
health risk.

 94

Bangladesh
vegetables and 
fruits

As: 5-31
Cd: 0.14-0.45
Pb: 18-38

As: < 0.01 (fruit)-0.77 
(root vegetable)
Cd: < 0.05 (fruit)-1.2 
(leafy vegetable)
Pb: 0.5 (fruit)-22 
(leafy vegetable)

As: 0.01 
(banana)-1.3 
(radish)
Cd: 0.02 
(banana)-0.63 
(Helencha)
Pb: 0.001 (pat 
shak)-2.85 
(Helencha)

-

As: 3 × 10−6 
(banana)-6 × 10−4 
(Radish)
Cd: 1 × 10−4 
(banana)-- 4 × 10−3 
(Helencha)
Pb: 5 × 10−6 
(banana)- 3.8 × 10−4 
(bottle ground)

Because of the risk 
of higher intakes of 
toxic metals, the study 
area is unsuitable for 
growing leafy and root 
vegetables.
Cd caused the highest 
cancer risk.

 95

Dabaoshan 
mine, South 
China

Rice & vegetable

Cu: 213-703
Zn: 234-1100
Pb: 130-386
Cd: 1.6-5.5

Vegetable
Cu: 0.28-3.61
Zn: 2.34-48.1
Pb: 0.01-0.39
Cd: 0.001-0.71
Rice:

Rice:
Cu: 0.66–0.89; 
Zn: 0.48–0.60; 
Pb: 1.43–1.99; 
Cd: 2.61–6.25
Vegetable
Cu < 0.2
Zn < 0.2
Pb < 0.5
Cd≈1

- -

THQs for Cd and Pb 
of rice and vegetables 
were > 1. Contamination 
of HMs in food crops 
grown around the mine 
posed a great health risk 
to the local population.

 96
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Table 6. Continued.

Location Crop
HMs in Soil 
(mg/Kg)

HMs In Food Crops 
(mg/kg)

Health Risk Assessment (Adult)*

Interpretation

R
ef

er
en

ce
s

THQ TTHQ TCR

Punjab, India
Wheat, mustard, 
rice, maize

Cd: 0.79 
(wheat)-1.73 
(rice)
Co: 13.15 
(mustard)-17.31 
(rice)
Cr: 2.40 (rice)-
4.17 (mustard)
Cu: 7.33 
(mustard)-11.38 
(Maize)
Pb: (7.15 (V)- 
13.39 (rice)
Zn: (26.52 
(maize- 37.21 
(mustard)

Cd: 0.99 (rice)-1.09 
(maize)
Co: 13.46 
(mustard)-15.21 (rice)
Cr: 2.45 
(mustard)-19.98 (rice)
Cu: 6.08 
(wheat)-69.89 (rice)
Pb: 16.34 
(mustard)-18.28 
(maize)
35.71 (rice)-
59.33(mustard)

Cd: 4.07 
(wheat)-0.04 
(maize)
Co: 2.07 
(maize)-182.48 
(wheat)
Cr: 0.03 
(maize)-5.92 
(wheat)
Cu: 0.04 
(mustard)-0.59 
(wheat)
Zn: 0.005 
(maize)-0.66 
(wheat)

2.20 (mustard)- 
193.73 (wheat)

Cr: 5.1 × 
10−5(maize)-8.87 
× 10−3(wheat)

All the soil samples 
had high Cd and Co 
contents, whereas, all 
crop samples had high 
contents of Co and Pb.
Dietary intake of Co via 
all food crops posed 
a higher non-cancer 
health risk to residents 
in comparison to other 
HMs. 
The Cr posed the highest 
cancer risk through the 
consumption of wheat 
grains, being a staple 
diet in the study area.

 97

Pearl River 
Delta, South 
China

Vegetable

Hg: 0.038–1.49
Cd: 0.01–0.69
Pb: 3.42–140
Cr: 3.57–1 1 7
As: 0.68–105

Hg: 0.0014-0.0026
Cd: 0.020-0.060
Pb: 0.055-0.26
Cr: 0.095-0.23
As: 0.033-0.063

For all metals
 < 1

0.128 ± 0.077 -
No significant health 
risk

 98

Jiangsu, China

Rice soil
Cr: 58-130
Cd: 0.106-
0.198
Hg: 0.144-
0.399
Pb: 21-38
Cu: 23-41
Zn: 71-148
Vegetable soil
Cr: 57-150
Cd: 0.045-
0.856
Hg: 0.05-3.7
Pb: 19-153
Cu: 17-220
Zn: 47-215

Rice
Cr: ND-2.83
Cd: 0.005-0.032
Hg: 0.001-0.013
Pb: 0.0076-0.12
Cu: 1.36–3.61
Zn: 9.43–15.78
Vegetable
Cr: 0.023-4.44
Cd: 0.0006-0.099
Hg: 0.00002-0.007
Pb: 0.0006-0.293
Cu: 0.17–4.18
Zn: 0.65–15.19

Cr: 0.004
Cd: 0.102
Hg: 0.049
Pb: 0.129
Cu: 0.423
Zn: 0.247

-

Cu, Zn and Pb were 
the top three metals 
with higher health risks. 
For the health of local 
inhabitants, Cu, Zn 
and Pb emissions from 
electroplating firms 
should be controlled.

 99

Hamadan, 
Iran

Pb: 63- 129
Cd: 3.1-7.4
As: 25-51
Hg: 0.26-1.34
Cr: 50-131

Pb: 0.38
Cd:0.18
Hg: 0.03
Cr: 0.0005
As: 0.98

As: 2.644 × 10−4
Cd: 5.99 × 10−4
Pb: 6.7 × 10−6

Average value of THQ 
for As was far above the 
THQ threshold.
The majority of the CR 
values for Pb, As, Cd, 
and Ni in crops were 
in the acceptable range 
for adults. High risks 
exceeding 1 × 10-4 levels 
were only found for Ni 
in crop samples for the 
adult group.

 72

Pearl River 
Delta urban 
agglomeration 
of China

Rice, maize, 
Leaf vegetables, 
Brassica 
vegetables, 
Legume 
vegetables, 
Stalk and stem 
vegetables, Root 
vegetables, 
Fruiting 
vegetables, 
cucurbits, 
Solanaceous 
fruiting 
vegetables, Fruit

Cd: 0.27 ± 0.39
Cr: 
51.78 ± 33.62
Pb: 
47.27 ± 30.58
Hg: 0.26 ± 0.40
As: 
13.04 ± 14.22

Cd: 0.02 (Brassica 
vegetable) - 0.17 
(rice) 
Cr: 0.043 (Brassica 
vegetable) - 0.56
Pb: 0.048 - 0.27
Hg: 0.00038 – 0.0027

Cr: 4.6 × 10−6 - 
0.0024
Pb: 0.001 
-0.46
Cd: 0.26-1.03
As: 0.0006-
0.49
Hg: 0.00062-
0.16

-

All THQs was less 
than 1 (except THQ 
for Cd), so Cd was the 
main metal that posed 
high potential risks for 
human health when 
consumed grain and 
corn in the PRDUA.

 73

Kermanshah, 
Iran

Zn: 75
Cu: 41
Ni: 131
Cr: 79

Wheat & Maize
Zn: 34;38
Cu: 7.9; 4.8
Ni: 1.4; 5.6
Cr: 4.9; 3.3

For all metals
 < 1

Wheat
Ni: 8.4 × 10−3

Cr: 1.7 × 10−2 

Maize
Ni: 6.1 × 10−5

Cr: 1.6 × 10−5

The carcinogenic 
risk values of Ni 
and Cr were above 
the threshold value 
(1 × 10−6), suggesting 
that Wheat in province 
might pose a serious 
threat to human health.

 90

THQ, target hazard quotients; TTHQ, sum of the THQs; TCR, target cancer risk.
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workers in e-waste areas.111 Ingestion of house dust may 
significantly contribute to the exposure of HMs for the 
general population, given the substantial amount of time 
spent indoors.112 This source of exposure is particularly 
significant for children, who often engage in activities 
such as playing on the floor and hand-to-mouth contact.

In a study assessing the concentration of HMs in food, 
house dust, and water from an e-waste recycling area 
in South China, Zheng and Chen112 reported elevated 
concentrations of HMs in the samples, with the exception 
of drinking water. Furthermore, these researchers 
highlighted the non-carcinogenic risks associated 
with rice, vegetables, and house dust for adults, while 
emphasizing that carcinogenic risks for young children 
primarily stem from exposure to house dust. Exposure 
to HMs is a great concern since there are no mechanisms 
in the human body that can degrade such elements.5 
Malnourishment and diseases such as abdominal pain, 
anorexia, cardiovascular diseases, immune dysfunction, 
hypertension, liver, and kidney-related disorders, as 
well as various kinds of cancers, can arise not only from 
nutrient deficiency but also from excessive intake of 
HMs, which they are available in contaminated food 
and drinking water.5 As Table 1 indicates, humans are 
exposed to HMs on a daily basis. Because of the lack of 
a suitable method for their removal from the body, even 
small quantities of HMs have adverse effects on public 
health.4 The most important method of Cd enters the 
human body is usually via consuming contaminated foods 
and smoking cigarettes.1,113 According to the findings,114 
the concentration of Cd in wheat produced in Iran ranges 
from < 0.007 to 0.162 mg/kg, with an average of 0.011 
mg/kg. This level is considerably lower compared to that 
of other countries, including many developed nations, 

indicating the high quality of wheat produced in Iran 
in terms of Cd content. The measurements also showed 
that the concentration of Cd in 4% of the samples was 
further than the maximum allowable concentration of the 
Iranian national standard (0.03 mg/kg) and based on the 
standard Codex and EU (0.2 mg/kg), no contamination 
was observed in any of the wheat samples. Furthermore, 
the risk assessment of Cd indicated that wheat produced 
in the country falls within a safe range in terms of Cd 
concentration, affirming that its consumption does not 
pose a threat to consumer health.114

Julin et al115 reported that the geometric mean Cd intake 
via food in the general population in Japan is about 25.5 
µg/d, which is higher than that in Sweden (mean, 15 µg/d). 
The provisional tolerable monthly intake for Cd, aimed 
at preventing renal tubular dysfunction, is set at 25 µg/kg 
body weight/month.25 Studies have also indicated that Cd 
metal and Cd compounds are associated with an increased 
risk of various cancers, including lung, breast, pulmonary, 
prostatic, renal, hepatic, hematopoietic, urinary, stomach 
cancers, as well as Alzheimer’s disease in humans.116-119 
Head and neck cancers (HNC), encompassing a group of 
similar malignancies affecting the oral cavity (pharynx, 
ear/nose, and larynx), are among the most prevalent 
types of cancer worldwide.120 The incidence of HNC can 
be influenced by HMs found in tobacco and alcohol, with 
particular emphasis on Cd concentration, which tends to 
be higher in tumor tissues compared to normal tissues.9,68 
In humans, high dosages of As ingestion could be fatal 
and lower levels can cause a variety of systemic effects.6 
As compounds are associated with many forms of skin, 
head and neck, lung, bladder, kidney, and liver cancers, 
particularly when high levels enter the human body 
through drinking water9 or inhalation and/or ingestion 

Figure 2. The Properties of the Water, Such as Acidity or the Amount of Organic Matter (left panel)25,115 and Influence of Entered HMs by Consuming Contaminated 
Foods on Human Health (right panel).4
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of atmospheric particles.7 Consumption of fish, shrimp 
or shellfish, pork, beef, or mutton can contribute to the 
entrance of high levels of As in maternal blood levels 
in pregnant women.121 Arsenic-induced skin cancer is 
distinguishable from other types of skin cancer because 
it occurs in sun-protected areas of the body. Increasing 
documents during the last decades suggest that people 
exposed to even very low levels of inorganic As for a long 
time are more amenable to certain cancers, including 
bladder, lung, and skin cancer. Lower concentrations 
of the toxic compounds are thought to have different 
effects on cells and chromosomes compared to higher 
concentrations, but both may lead to cancer.122 Causal 
relationships between long-term exposure to inorganic 
As and the incidence of human cancers such as skin, 
lung, and bladder cancers have been approved. Anyone 
may be exposed to Hg. Eating fish is the principal way 
by which methyl Hg enters the human body. People may 
intake other forms of Hg through breathing contaminated 
workplace air or skin contact, particularly in occupations 
involving chemical or dental work. Vapors originating 
from spills, incinerators, and industries utilizing mercury-
containing fuels are additional sources contributing to 
air pollution.123 The nervous system is highly sensitive to 
all forms of Hg. Exposure to elevated levels of metallic, 
inorganic, or organic Hg can lead to permanent damage 
to the brain, kidneys, and developing fetus. Adverse 
effects on brain function may manifest as irritability, 
shyness, tremors, alterations in vision or hearing, and 
memory impairment.123 While there are no definitive 
studies demonstrating that Hg causes cancer in humans or 
animals. Cr does not accumulate in the body and rapidly 
becomes excreted into the urine. Cr is a major causative 
that contaminates round water in several countries. There 
is increasing evidence showing that Cr can interfere with 
distinct steps of diverse DNA repair systems124 as well as 
oxidative DNA damage. The carcinogenic potential of 
Cr (VI) is well demonstrated in humans and animals.8 
Some Cr compounds are known to cause lung cancer.8 
However, the role of ingested Cr (VI) in the induction of 
carcinogenicity still remains controversial. 

Pb enters the environment and subsequently the 
human body through various pathways (see Table 1). In 
a study conducted on wheat produced in Iran114, results 
indicated that the concentration of Pb in the country’s 
wheat ranged from < 0.022 to 0.72 mg/kg, with an average 
of 0.032 mg/kg. The average Pb concentration in wheat 
produced in Iran (0.032 mg/kg) is comparatively lower 
than that of other countries. When evaluated against 
the Codex standard (0.20 mg/kg), the Pb concentration 
exceeded the maximum allowable concentration in only 
0.70% of the samples. Additionally, the results revealed 
that Pb concentrations in 1% of the wheat samples 
exceeded the maximum allowable concentration specified 
by the national standard of Iran (0.15 mg/kg), while in 
99% of the analyzed samples, Pb concentrations were 
below this threshold. Pb concentrations in rainfed and 

irrigated wheat were measured at 0.028 and 0.034 mg/kg, 
respectively. Overall, the risk assessment of Pb indicated 
that wheat produced in Iran falls within a safe range in 
terms of Pb concentration, and its consumption poses no 
threat to consumer health.114

Pb enters the body through contaminated food and 
water, as well as through ingestion and inhalation 
of atmospheric particles, particularly the ingestion 
of Pb in fine particulate matter, posing carcinogenic 
risks.7 Prolonged exposure to Pb can lead to memory 
deterioration, prolonged reaction time, and diminished 
cognitive abilities.125 Animal studies on kidney and 
brain tumors have indicated that Pb acetate and Pb 
phosphate may potentially be carcinogenic. Additionally, 
environmental exposure to Pb has been associated with an 
increased risk of brain cancer.126 Cancer researchers have 
classified Pb as a possible human carcinogen (group 2B), 
while its inorganic compounds are considered probable 
human carcinogens (group 2A).125 Ni is omnipresent in 
the air, water, soil, and biological materials (see Table 1), 
and as a result, it is absorbed through ingestion, inhalation, 
and skin contact. The toxicity and carcinogenicity of 
certain Ni compounds have been documented.127,128 

Selenium (Se) is a key element for the biosynthesis 
and function of selenoproteins and therefore plays a 
vital role in the anti-oxidative response, reproduction, 
metabolism of thyroid hormones, and protection against 
infection.129 The initial report suggesting that Se is a 
cancer-protective trace element emerged in the late 1960s 
and early 1970s.130,131 Various mechanisms have been 
proposed to elucidate the anti-carcinogenic activity of 
selenium. These mechanisms are thought to be linked to 
the generation of reactive oxygen species through redox 
cycling, modification of protein-thiols, and methionine 
mimicry. However, certain studies suggest that selenium 
supplementation in a selenium-replete population does 
not significantly reduce the incidence of certain types of 
cancers, such as prostate cancer.132

Some Strategies to Reduce the Risks Posed by HMs
Soil plays a crucial role in the production and recovery 
cycles, serving as the foundation of all life on Earth and 
being one of the indispensable components of biodiversity. 
Contamination of soil by various organic and inorganic 
pollutants disrupts production and material recovery 
processes in nature. Moreover, soil contamination 
interferes with vital processes of soil-dwelling organisms 
and can inflict damage upon plants.

HMs hold significance due to their non-degradable 
nature and their physiological effects on living organisms 
even at low concentrations.65,133 These potentially toxic 
metals originate from both natural and anthropogenic 
sources. Naturally, HMs derive from various minerals 
present in the Earth’s crust, with their diffusion occurring 
through processes such as erosion, sedimentation, volcanic 
activity, forest fires, weathering, acid rain, and surface 
runoff. Anthropogenic activities contribute to the artificial 
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dissemination of HMs, including mining, combustion of 
fossil fuels, metallurgical industry operations, and the use 
of agrochemicals such as organic and inorganic fertilizers, 
pesticides, and others (see Table 4). Paying attention to 
these different origins of HMs, and applying suitable and 
efficient methods and strategies for diminishing these 
elements’ entry into the environment and their dangerous 
effects on the soil ecosystem and finally living creatures is 
essential and vital. 

Soil contaminants can be remediated through chemical, 
physical, and biological methods, categorized into 
two approaches: in-situ and ex-situ methods.134 In the 
in-situ method, suitable plants and microorganisms 
known as hyper-accumulators of HMs are applied 
(a technique known as bioremediation), along with 
various amendments such as biochar, organic, and 
inorganic compounds.2,63,135,136 Conversely, physical and 
chemical remediation processes are employed in ex-situ 
remediation methods.137,139,140 Preventive measures should 
be prioritized before resorting to remedial methods, as 
they are often more cost-effective and easier to implement. 
Given that soil, as one of nature’s most stable and resilient 
elements, plays a crucial role in mitigating the effects of 
HMs, it warrants special attention and consideration as 
a key strategy. Managing soil organic matter through the 
application of various organic fertilizers, either alone or 
in combination with chemical fertilizers, ensuring the 
quality of irrigation water, and carefully regulating the 
application rates, types, and purity of chemical fertilizers 
and agrochemicals based on soil and plant analysis results 
are vital strategies for reducing the entry of HMs into 
the environment and ultimately the food chain. These 
measures should be taken seriously and implemented 
diligently.

Conclusion 
HMs enter food chains through various anthropogenic 
activities, including agricultural and industrial practices, 
and subsequently find their way into the human body 
through inhalation, water consumption, and food 
ingestion. Management of agrochemical applications, 
quality control of different fuels that are applied as energy 
sources for houses heating, manufactories, industries, and 
vehicle operating, management of different agricultural 
and industrial wastes are the main management strategies 
for diminishing HMs’ entry into the environment. While 
these strategies are primarily considered preventive 
measures, once soil and water become contaminated with 
these potentially toxic elements, the situation changes. 
Significant costs are often incurred in remediating the soil, 
water, and the overall environment. Given the hazardous 
effects of HMs on plants, birds, animals, and ultimately 
humans, it is crucial to accurately and scientifically 
identify the various sources of HMs to which living 
creatures are exposed. This identification is essential for 
ensuring human health, as HMs are non-biodegradable, 
possess long biological half-lives, and have a propensity 

to accumulate in the body, thus posing significant risks to 
public health. The type and quality of diet and water play a 
pivotal role in determining the extent to which HMs enter 
the body. Industrial and agricultural activities stand out 
as the two primary sources of HMs in the environment, 
warranting special attention and vigilance. The hazardous 
effects of HMs on human health have been demonstrated in 
different studies; however, no efficient methods/ways have 
been yet proposed to remove the HMs from body habitats 
in contaminated areas, necessitating the conduction of 
future research toward solving this problem. Nevertheless, 
there exist strategies and techniques aimed at reducing 
the entry of HMs into the soil and subsequently into 
food chains in contaminated soils, necessitating serious 
consideration.
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