

Simultaneous degradation and adsorption of cyanide using modified fly Ash and TiO_2/UV

Shima Rezaei¹, Hadi Rezaei², Meghdad Pirsaheb³, Saeb Ahmadi⁴, Hooshyar Hossini³

1 Research Center for Environmental Health AND School of Public Health, Kurdistan University of Medical Sciences, Sanandaj, Iran

2 Sanandaj Health Center AND Department of Environmental Health Engineering, School of Public Health, Kurdistan University of Medical Sciences, Sanandaj, Iran

3 Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran

4 Department of Chemical Engineering, School of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Original Article

Abstract

Due to the present water shortage and environmental problems associated with industrial effluent, investigation of novel treatment technologies is an essential approach. Being a highly toxic chemical of asphyxiating characteristics, cyanide is seen as a major environmental pollutant in a wide range of industrial effluents. The present study aimed to address the adsorption and photocatalytic degradation of cyanide using activated fly ash and TiO₂/UV. To investigate the removal efficiency of cyanide, two sets of experiments were designed. First, cyanide was absorbed by activated fly ash and degraded via a photocatalytic process, individually. Second, simultaneous adsorption and degradation was examined. The removal efficiency of cyanide by modified fly ash (MFA), TiO₂/UV, and their combination (MFA-TiO₂/UV) was 76.1%, 81%, and 86.6%, respectively. Optimal conditions for the combination of activated fly ash AFA-TiO₂/UV were contact time of 6 hours, temperature of 100 °C, and AFA: TiO₂ ratio (w/w) of 1:1. Under these conditions, a maximum removal rate of 92.4% was obtained when 1.2 g of MFA/TiO₂ was used with a pH value of 3 in the presence of UV light. Based on the results of cyanide removal, it can be concluded that the combination of adsorption and photocatalytic degradation with MFA-TiO₂/UV can be utilized to improve the removal of cyanide from wastewater.

KEYWORDS: Adsorption, MFA-TiO₂/UV, Cyanide, Photocatalytic Degradation

Date of submission: 22 Apr 2015, Date of acceptance: 12 Jun 2015

Citation: Rezaei Sh, Rezaei H, Pirsaheb M, Ahmadi S, Hossini H. Simultaneous degradation and adsorption of cyanide using modified fly Ash and TiO₂/UV. J Adv Environ Health Res 2015; 3(3): 196-203.

Introduction

As a result of the increasingly growing rate of pollutant discharge by industries into the environment and ecosystem many problems are emerging such as health concerns and contamination of water resources. As a strong asphyxiating chemical group, cyanides are

Corresponding Author: Hooshyar Hossini Email: h.hosseini@kums.ac.ir present in several industrial wastewaters including those of paint, oil refining, explosives, chemicals, plating, pesticides, synthetic fiber production, mining, electronics, and coking industries.¹⁻³ The health damages caused by high levels of cyanide exposure include headaches, dizziness, dermatitis, pruritus, weak and rapid pulse, nausea, and vomiting. Extreme levels of exposure may lead to brain damages, coma, and eventually death. A cyanide concentration of about 0.05 mg/dl

196 J Adv Environ Health Res, Vol. 3, No. 3, Summer 2015

can produce some toxins in the blood.^{4,5} The lethal dose of cyanide for humans has been determined to be about 5 mg per kg of body weight.^{6,7} Common processes of cyanide removal encompass physical, chemical, and biological techniques. Through physical techniques (such as membrane processes, ion exchange, and adsorption), the removal process is only completed by phase change. On the other hand, the toxicity of cyanide may limit the use of biological techniques to low concentrations, requiring a long duration of time to proceed. The most common chemical method for cyanide removal is alkaline chlorination, with its greatest limitation being the production of cyanogen chloride.8-10 However, because of their incomplete cyanide removal and remarkably high cost, chemical methods are limited in application. Today, the use of the photocatalysis process as a strong and efficient yet green technology is growing in comparison to conventional methods.^{11,1} Many researches have confirmed the efficiency of the photocatalysis process in cyanide removal.^{12,13} Some researchers have suggested considerable improvements, provided the photocatalysis system is coupled with a primary adsorbent such as zeolite or activated carbon.14 Absorption is an important part of photocatalytic removal;¹⁶ thus, an increase in absorption capacity can improve photocatalytic characteristics.¹⁵ Therefore, adding a high capacity adsorbent such as fly ash (FA) to a catalysis system such as TiO₂, in the presence of UV light, can improve the photocatalytic performance. The main decomposition mechanisms by combined modified fly ash $(MFA)/TiO_2$ are defined in the three steps of chemical species adsorption on the surface of MFA/TiO₂, optical dispersion over the surface, and desorption of final product from the surface of MFA/TiO₂. Hence, when TiO₂ is loaded on FA, the adsorbed analytes on FA move to the catalyst, via diffusion process, where they are decomposed.^{17,18} The present

study aimed not only to perform a simple modification process to enhance FA adsorption capacity, but also to mix MFA with TiO_2 nanoparticles in the presence of UV to achieve a higher removal efficiency for cyanide. To the best of our knowledge, no similar study has been reported.

Materials and Methods

All material and chemical regents were of analytical grade. The experimental study was conducted on both synthetic and real samples at the laboratory scale. Raw FA was collected from Zarand Thermal Power Plant (Kerman, Iran). Once prepared, FA was sieved to isolate particles of 100 to 200 mesh size. Then, FA was washed with distilled water at a liquid: solid ratio of about 10 for 48 hours, before being filtered and dried in an oven at 105 °C to obtain washed fly ash (WFA). The size and specific surface area of the used TiO₂ were 20 nm and 40 m²/g, respectively.

In order to determine the optimum conditions for obtaining an optimal FA, 4 consecutive stages were evaluated following a single-factor optimization approach. In the FA modification process, effective parameters such as acid concentration, time modification, acid/WFA ratio, and temperature modification were set to their optimal values. At the end, MFA/TiO₂ ratio was evaluated. In order to determine acid concentration, raw fly ash (RFA) was modified at different concentrations of sulfuric acid, including 0.01, 0.1, 1, 1.8, and 2 M/l, at boiling point under reflux for 3 hours. After filtration using Whatman filter (pore size $\sim 0.45 \,\mu$ m), FA was washed several times with distilled water, and then, rinsed using ethanol to bring its pH value to 0 (neutral pH). Then, FA was dried at 105 to 120 °C and stored in a desiccator for further analysis. In the next step, WFA was modified using different acid/WFA ratios of about 3, 7, 9, 10, 11, and 13. Subsequently, WFA was modified using different times (i.e., 1, 3, 6, and 9 hours) and temperatures (i.e., 29, 70, 85, 100, and 120 °C).

The effect of MFA:TiO₂ ratio was evaluated at the ratios (in w/w) of 0:4, 3:1, 1.5:2.5, 1:1, 2.5:1.5, 1:3, and 4:0.

At all steps, optimal values of effective parameters in cyanide removal by MFA-TiO₂/UV were selected as judging criteria.

In this section, other parameters effective on photocatalitic degradation [e.g., initial pH (2-11) and substrate dose (0.3-1.5 g)] were studied. Moreover, different concentrations of cyanide (2.5 to 75 mg/l) were brought into contact with the MFA-TiO₂/UV at optimum conditions. Degrees of oxidation reactions were also determined. To evaluate MFA-TiO₂/UV under actual conditions, real samples were prepared from the electroplating industry and treated under optimum conditions using MFA-TiO₂/UV.

All tests were analyzed at room temperature and conducted in duplicates to increase the accuracy of the results. Residual cyanide was determined using an atomic absorption spectrophotometer (Philips-PU 9100X) coupled with a mercury UV lamp (30 W, 338 mw/m²) as light source with maximum wavelength of 360 nm. To avoid light reflection, the entire system was wrapped in aluminum foil.

Results and Discussion

Scanning Electron Microscopy-Energydispersive X-ray Spectroscopy (SEM-EDS) Figure 1 shows the growth of porosity and active sites on FA surface after modification. These micropores can be occupied by TiO₂ nanoparticles on the surface of the adsorbent.

http://jaehr.muk.ac.ir

Simultaneous determination of electrical conductivity (EC) and total dissolved solids (TDS) after 48 hours of washing of FA indicated them to increase to about 2.3-4.07 mS/cm² and 80-1710 ppm, respectively. These results reveal that water-soluble compounds from FA had dissolved as a result of acidic treatment and the development of pores. EDS results demonstrate the weight percent (wt%) of different elements and metal oxides in FA, including carbon, sulfur, oxygen, CO₂, SO₃, iron, vanadium, V₂O₅, and Fe₂O₃. The weight percent of the abovementioned elements before FA modification were about 77.94, 7.73, 10.9, 91.97, 6.22, 1.32, 2.09, 1.2, and 0.61 wt%, respectively. After treatment, the values changed to 86.52, 6.8, 6.68, 92.94, 5.08, 0, 0, and 0% wt%, respectively, indicating an increase in carbon content after acidic treatment, which confirms the enhancement of adsorption capacity. The results were in agreement with those reported by Wang et al.¹⁹

Effect of acid concentration and activation time

Figure 2 illustrates the photocatalytic removal of cyanide by MFA-TiO₂ under different acidic conditions. Under these conditions, the removal rate increased with acid dose. The removal efficiency was 51.3% when WFA/TiO₂ was used alone. With the increasing of acid concentration from 0.01 to 2 M, the removal rate increased from 64 to 79.11%. Accordingly, 1 M was considered as the optimum acid concentration for the following experiments. indicated Statistical analysis that acid concentration was not significantly correlated with cvanide removal efficiency (P \sim 0.256). Figure 3 presents a demonstration of the effect of activation time. The results showed that the removal percentage was improved from 77.5 to 86.2% with the increasing of activation time from 2 to 10 hours. Through further evaluation of removal efficiency, the activation time of 6 hours was found to be the optimum value. In addition, a significant relationship was observed between

time and removal efficiency

1.5

1

2

 $(P \sim 0.026).$

activation

0

0.01

Acid Concentration (M) Figure 2. Effect of acid concentration on cyanide removal [cyanide: 30 mg/l, unadjusted pH]

0.1

Figure 3. Effect of activation time on cyanide removal [cyanide: 30 mg/l, unadjusted pH]

Effect of temperature

Figure 4 shows cyanide removal efficiency when activation temperature changes from 26 (room temperature) to 120 °C. The figure indicates the significant effect of temperature on cyanide removal, where removal efficiency changes from 73.6 to 89.13% with the increasing of temperature. With regard to greater cyanide removal at 97 °C, boiling point of water was chosen as the optimum temperature for FA activation. Based on statistical analysis, there was a significant relationship between temperature and removal efficiency (P = 0.01). Panitchakarn et al. reported an initial increase in the purity of FA with increasing acid concentration, followed by

Rezaei et al.

a relatively constant trend with further increase in the acid concentration.²¹ The acid:FA ratio did not significantly contribute to the modification of fly ash. Porosity and surface area increased with the reduction in impurities due to longer activation time and higher treatment temperature.20-22 According to the results, optimal acid/WFA ratio was found to be about 7 (data not reported). The removal of vanadium compounds by acid-treated adsorbent was confirmed in the studies by Kashiwakura et al.23 and Kashiwakura et al.24 in which dangerous substances such as arsenic and selenium were successfully removed.

Figure 4. Effect of activation temperature on removal efficiency [cyanide: 30 mg/l, unadjusted pH]

Figure 5 shows changes in removal efficiency with MFA to nanoparticles ratio for different contact times. The cyanide removal efficiency for MFA, TiO₂/UV, and MFA- TiO_2/UV were found to be 76.1, 81, and 86.6%, respectively. Accordingly, the removal efficiency of MFA-TiO₂/UV was higher than that of either the absorbent or the catalyst alone. The appropriate ratio of TiO₂ to MFA was 1. No statistically significant relationship was found between MFA: TiO₂ ratio and removal efficiency (P \sim 0.098). By increasing surface area, chemical species were the provided with further area, which improved photocatalytic removal efficiency.25 Optical dispersion rate of pollutants is affected by light absorption of the used catalyst and the active sites. Evidently, the photocatalytic process is likely to proceed more efficiently with adsorption. appropriate When TiO₂ is introduced into fly ash pore space, due to the proximity of contaminants and the catalyst, a better removal condition is provided. This can be associated with FA serving as an adsorbent. In other words, depending on the type of fly ash, the removal efficiency changed, leading to a reformed process.26 In mixture substrate (MFA/TiO₂), a competition is established on active sites, with the located TiO₂ molecules on adsorbent surface behaving similar to its host. During this process, both substrates (MFA and TiO₂) are engaged with pollutants, and the absorption process takes place before the photocatalytic process. Chemical and structural changes in FA lead to changes in surface morphology, ultimately leading to important changes in the substrate affinity toward pollution before and after the modification. Such a sharp change confirmed the increase in EC and TDS by the deposition and dissolution processes.²⁷ Through studying the effect of radiation time, it was found that the longer the radiation time, the more free electrons were likely to be generated in the conductor band, which resulted in the enhancing of removal efficiency.

Figure 5. Effect of different FA:TiO₂ ratios on removal efficiency [cyanide: 30 mg/l, unadjusted pH]

Samarghandi et al. argued that increasing the radiation time from 15 minutes to 180 minutes may raise the efficiency of cyanide removal using UV/TiO₂ from 56.4% to 84.4%.²⁸ Moreover, the results of this research were consistent with those of the studies by Kim et al.²⁹ and Wahaab et al.³⁰

Effect of MFA/TiO2 dosage and pH

Figure 6 shows cyanide removal efficiency for various pH values. Because the substrate surface contains more negative charges, the efficiency decreases with removal the increasing of pH,^{28,31} so that higher cyanide removal efficiency was obtained for acidic pH (herein ranging from 5 to values 2). Accordingly, the acidic pH value of 3 was selected as the optimum pH value for further statistically experiments. А significant association was found between pH and removal efficiency (P = 0.001).

Figure 6. Effect of pH on the removal efficiency of cyanide [cyanide: 30 mg/l, pH: 2-11]

Figure 7 illustrates the effect of MFA/TiO_2 dosage. The presented results show that the removal rate increased with the increasing of composite dosage. However, further increasing of the MFA/TiO₂ ratio from 1.2 to 1.5 g showed a negative effect. Thus, 1.2 g was chosen as the optimum dose. The reduction of removal efficiency by increasing the substrate dose was possibly a result of increased solution turbidity which consequently disrupted the photons' traveling path. In addition, some responses can be effective in this regard, including reduced UV light penetration and total excitation surface.³² Some authors reported that such an increase can lead to the adhesion of contaminants to the solid photocatalyst surface, and thus, prevent photons from being stimulated.³³ Similar results were reported by Shirzad Syboni et al., who obtained a higher removal effeciency of about 92.45%.³⁴ In addition, a significant relationship was obtained between the mixed substrate (MFA/TiO₂) dose and removal efficiency ($P_v = 0.015$).

Under optimal conditions, the influence of initial cyanide concentration was investigated by changing the concentration from 2.5 to 75 mg/l (data not reported), which caused the efficiency to decrease from 98.1 to 64.14%. It is clear that, when the concentration is increased, TiO₂ surface is quickly occupied by cyanide molecules, further inhibiting an effective photon-excitation of the catalyst surfaces.

Figure 7. Effect of mixed substrate dose on removal efficiency [cyanide: 30 mg/l, pH: 3]

This may also be due to reduced light penetration due to increased pollutant concentration, as well as the reduced length of the incoming photons into the solution.³³

High concentrations may degrade the pollutants and produce water-insoluble polymer compounds that attach to the catalyst surface and slow down the photocatalytic degradation.³⁵ The removal rate data was fitted to the second order kinetics equation and a high

correlation coefficient (R²) of about 0.999 was determined. The removal efficiency in the real sample (74.4%) was lower than that in the synthetic sample because of the presence of intervening compounds.

Conclusion

In the present study, the adsorption and photocatalytic degradation of cyanide using activated fly ash (AFA) and TiO_2/UV was addressed. Based on the results, the removal efficiency of cyanide by MFA, TiO_2/UV , and their combination (MFA-TiO_2/UV) was about 76.1, 81, and 86.6%, respectively. Under optimum conditions, a maximum removal rate of about 92.4% was obtained. According to the results, it can be concluded that simultaneous adsorption and photocatalytic degradation using MFA-TiO_2/UV can successfully remove cyanide from wastewater.

Conflict of Interests

Authors have no conflict of interests.

Acknowledgements

We sincerely appreciate the financial and instrumental supports of Kurdistan University of Medical Sciences, Iran.

References

- 1. Dash RR, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and its removal: a review on biotreatment. J Hazard Mater 2009; 163(1): 1-11.
- 2. Naveen G, Majumder CB, Mondal P, Shubha D. Biological treatment of cyanide containing wastewater. Res J Chem Sci 2011; 1(7): 15-21.
- Dash RR, Balomajumder C, Kumar A. Removal of cyanide from water and wastewater using granular activated carbon. Chem Eng J 2009; 146(3): 408-13.
- 4. Shokuhi R, Mahvi A, Bonyadi Z. Efficiency compare of both sonochemical and photosonochemical technologies for cyanide removal from aqueous solutions. Iran J Health Environ 2010; 3(2): 177-84. [In Persian].

- Baskin SI, Kelly JB, Maliner BI, Rockwood GA, Zoltani CK. Cyanide poisoning. In: Tuorinsky SD, Editor. Medical aspects of chemical warfare. Washington, DC: Walter Reed Army Medical Center; 2008. p. 371-410.
- Nelson L. Acute cyanide toxicity: mechanisms and manifestations. J Emerg Nurs 2006; 32(4 Suppl): S8-11.
- Malhotra S, Pandit M, Kapoor JC, Tyag DK. Photooxidation of cyanide in aqueous solution by the UV/H₂O₂ process. Journal of Chemical Technology and Biotechnology 2005; 80(1): 13-9.
- Karunakaran C, Gomathisankar P, Manikandan G. Solar photocatalytic detoxification of cyanide by different forms of TiO₂. Korean J Chem Eng 2011; 28(5): 1214-20.
- Kim JH, Lee HI. Effect of surface hydroxyl groups of pure TiO₂ and modified TiO₂ on the photocatalytic oxidation of aqueous cyanide. Korean J Chem Eng 2007; 21(1): 116-22.
- 10. Lu Z, Zhou W, Huo P, Luo Y, He M, Pan J, et al. Performance of a novel TiO_2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste. Chemical Engineering Journal 2013; 225: 34-42.
- 11. Wang B, Li C, Pang J, Qing X, Zhai J, Li Q. Novel polypyrrole-sensitized hollow TiO₂/fly ash cenospheres: Synthesis, characterization, and photocatalytic ability under visible light. Appl Surf Sci 2012; 258(24): 9989-96.
- 12. Salinas-Guzmán R, Guzmán-Mar JL, Hinojosa-Reyes L, Peralta-Hernández JM, Ramírez H. Enhancement of cyanide photocatalytic degradation using sol-gel ZnO sensitized with cobalt phthalocyanine. J Solgel Sci Technol 2010; 54(1): 1-7.
- 13. Chiang K, Amal R, Tran T. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Advances in Environmental Research 2002; 6(4): 471-85.
- 14. Rezaee A, Pourtaghi GH, Khavanin A, Saraf Mamoori R, Hajizadeh E, Valipour F. Elimination of toluene by application of ultraviolet irradiation on TiO₂ Nano particles photocatalyst. J Mil Med 2007; 9(3): 217-22. [In Persian].
- 15. Low W, Boonamnuayvitaya V. Enhancing the photocatalytic activity of TiO_2 co-doping of graphene–Fe³⁺ ions for formaldehyde removal. J. Environ. Manage 2013; 127: 142-9.
- Visa M, Andronic L, Lucaci D, Duta A. Concurrent dyes adsorption and photo-degradation on fly ash based substrates. Adsorption 2011; 17(1): 101-8.
- 17. Shi Z, Yao S, Sui C. Application of fly ash supported

titanium dioxide for phenol photodegradation in aqueous solution. Catal Sci Technol 2011; 1(5): 817-22.

- 18. Zhang BH, Wu DY, Wang C, He SB, Zhang ZJ, Kong HN. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. J Environ Sci (China) 2007; 19(5): 540-5.
- Wang S, Boyjoo Y, Choueib A, Zhu ZH. Removal of dyes from aqueous solution using fly ash and red mud. Water Res 2005; 39(1): 129-38.
- 20. Li Y, Liu C, Luan Z, Peng X, Zhu C, Chen Z, et al. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J Hazard Mater 2006; 137(1): 374-83.
- 21. Panitchakarn P, Klamrassamee T, Laosiripojana N, Viriya-empikul N, Pavasant P. Synthesis and testing of zeolite from industrial-waste coal fly ash as sorbent for water adsorption from ethanol solution. Engineering Journal 2014; 18(1): 1-12.
- 22. Wang S, Wu H. Environmental-benign utilisation of fly ash as low-cost adsorbents. J Hazard Mater 2006; 136(3): 482-501.
- 23. Kashiwakura S, Ohno H, Kumagai Y, Kubo H, Matsubae K, Nagasaka T. Dissolution behavior of selenium from coal fly ash particles for the development of an acid-washing process. Chemosphere 2011; 85(4): 598-602.
- 24. Kashiwakura S, Ohno H, Matsubae-Yokoyama K, Kumagai Y, Kubo H, Nagasaka T. Removal of arsenic in coal fly ash by acid washing process using dilute H₂SO₄ solvent. J Hazard Mater 2010; 181(1-3): 419-25.
- 25. Huo P, Yan Y, Li S, Li H, Huang W, Chen S, et al. H_2O_2 modified surface of TiO₂/fly-ash cenospheres and enhanced photocatalytic activity on methylene blue. Desalination 2010; 263(1-3): 258-63.
- 26. Visa M, Duta A. Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems. J Hazard Mater 2013; 244-245: 773-9.
- 27. Visa M, Duta A. Adsorption behavior of cadmium and copper compounds on a mixture FA: TiO₂. Revue Roumaine de Chimie 2010; 55(3): 167-73.

- 28. Samarghandi M, Siboni M, Maleki A, Jafari S, Nazemi F. Kinetic determination and efficiency of titanium dioxide photocatalytic process in Removal of Reactive Black 5 (RB5) dye and cyanide from aquatic solution. J Mazandaran Univ Med Sci 2011; 21(81): 44-52. [In Persian].
- 29. Kim HJ, Lu L, Kim JH, Lee CH, Hyeon T, Choi W, et al. UV light induced photocatalytic degradation of cyanides in aqueous solution over modified TiO₂. Bull Korean Chem Soc 2001; 22(12): 1371-4.
- 30. Wahaab RA, Moawad AK, Taleb EA, Ibrahim H, El-Nazer HA. Combined photocatalytic oxidation and chemical coagulation for cyanide and heavy metals removal from electroplating wastewater. World Appl Sci J 2010; 8(4): 462-9.
- 31. Joshi K, Patil B, Shirsath D, Shrivastava V. Photocatalytic removal of Ni (II) and Cu (II) by using different Semiconducting materials. Advances in Applied Science Research 2011; 2(3): 445-54.
- 32. Tu Y, Xiong Y, Tian S, Kong L, Descorme C. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts. J Hazard Mater 2014; 276: 88-96.
- 33. Ghaneian M, Ehrampoush M, Ghanizadeh G, Dehvary M, Abootoraby M, Jasemizad T. Application of solar irradiation/K₂S₂O₈ photochemical oxidation process for the removal of reactive blue 19 dye from aqueous solutions. Iran J Health Environ 2010; 3(2): 165-76. [In Persian].
- 34. Shirzad Siboni M, Samadi MT, Rahmani A, Khataee A, Bordbar M, Samarghandi M. Photocatalytic removal of hexavalet chromium and divalent nickel from aqueous solution by UV irradiation in the presence of titanium dioxide vanoparticles. Iran J Health Environ 2010; 3(3): 261-70. [In Persian].
- 35. Hemmati Borji S, Nasseri S, Nabizadeh Nodehi R, Mahvi A, Javadi A. Photocatalytic degradation of phenol in aqueous solutions by Fe (III)-doped TiO₂/UV process. Iran J Health Environ 2011; 3(4): 369-80. [In Persian].

J Adv Environ Health Res, Vol. 3, No. 3, Summer 2015

203

http://jaehr.muk.ac.ir