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Fig. 2. Study area 

Applied data 

In order to model and predict air 

pollutants, we used the meteorological data 

(minimum daily temperature, maximum daily 

temperature, average daily temperature, total 

daily rainfall, sunny hours, cloudy hours, 

maximum wind speed, wind direction, daily 

average wind speed, maximum humidity, 

minimum humidity, and average humidity) 

and the data on the particulate matters (PM2.5 

and PM10). In addition, the air pollutant data on 

O3, CO, NOx, and SO2 were obtained from an 

air pollution monitoring station affiliated to the 

Environment Organization of Hamadan 

Province in Hamadan City. We also used the 

data collected from both the meteorological 

and environmental stations for the winter of 

2017-2018. 

Table 1 shows different values of 

maximum, minimum, mean, and standard 

deviation using the SPSS version 25 and 

summary of the results. 

Statistical analysis 

Data analysis was performed in SPSS 

version 25 using Pearson's correlation-

coefficient to assess the correlations between 

the meteorological and air pollution 

parameters; the correlation-coefficient 

indicates the degree to which the parameters 

were affected by each other. In addition, 

various ANN models were examined to predict 

and model the air pollution parameters. For use 

in the optimal models, the data with the most 

significant correlation with the desired 

parameters were used. 

Multilayer Perceptron Artificial Neural 

Network (MLP-ANN) 

The ANN design is inspired by the 

structure of the human brain and relies on 

advanced learning processes.24 The overall 

structure of ANN has three layers with specific 

tasks, including the data input layer to ANN, 

information processing layer (middle layer), 
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and output layer, which showed the results and 

outputs in addition to the processing of each 

network input parameter. In the current 

research, we used the multilayer perceptron 

network with the back propagation algorithm. 

Network design is based on a combination 

of data on the influential parameters in the air 

quality over time in various structures from the 

number of the data in the input layer. In each 

structure, the input data are through the output 

of the first layer neurons after processing, 

moving to the neurons of the next layers, and 

finally transmitting to the network output if 

acceptable. Otherwise, they return to the 

previous layers by calculating the 

computational error, and the calculations are 

repeated to obtain acceptable results.25  In our 

study, the normalized data were used as a 

network input to increase the data processing 

speed and prevent network interruptions in the 

local minimums.26 

 Table 1. Dispersion of the used data 

N Mean Std. Deviation Min Max 

O3 (ppb) 84 13.4843 4.53673 5.93 23.59 

CO (ppm) 84 1.4627 0.72311 0.37 3.76 

NOx (ppb) 84 32.2070 16.30880 16.98 90.18 

SO2 (ppb) 84 12.3190 1.61921 9.15 17.85 

PM10 84 78.4418 43.51749 15.04 197.68 

PM2.5 84 27.3755 15.05702 9.75 86.21 

Minimum daily temperature 84 -2.065 6.2733 -17.9 11.6 

Maximum daily temperature 84 10.836 5.3316 -4.7 19.0 

Average daily temperature 84 3.829 5.6729 -11.8 14.4 

Total daily rainfall 84 0.6455 1.69519 0.00 7.10 

Sunny hours 84 6.446 2.7069 0.0 11.0 

Cloudy hours 84 3.2002 1.97923 0.00 7.25 

Maximum daily wind speed 84 7.62 3.712 3 20 

wind direction 84 210.00 90.833 10 360 

Average wind speed (m/s) 84 2.6106 1.47389 0.50 7.50 

Maximum humidity 84 82.74 14.564 19 100 

Minimum humidity 84 38.26 16.891 10 95 

Average humidity 84 61.3144 16.39141 16.25 97.75 

Co-Active Neuro-Fuzzy Inference System 

(CANFIS) 

CANFIS was introduced by Jang et al. in 

1997 as a general form of adaptive neuro-fuzzy 

inference systems (ANFIS).27 CANFIS could 

be considered a global estimate of any 

nonlinear function, an important feature of 

which is the benefits of integrating an artificial 

neural network with a fuzzy inference system 

in one format. CANFIS consists of five layers, 

including the fuzzification layer, rule layer, 

normalization layer, defuzzification layer, and 

summation layer.28 The function of each layer 

has been described by Aytek et al.29 

Evaluation of the models 

Error values should be at the minimum; 

for this purpose, training and testing should be 

repeated with various structures, so that the 

error would be minimized and better structures 

could be found. In order to evaluate and 

compare the results of various structures in the 

present study, the coefficient of determination 

(R), mean absolute error (MAE), and 

normalized root mean square error (NRMSE) 

were calculated. 

𝑀𝐴𝐸:
1

𝑛
∑ = 1

𝑁

𝑖
|𝑥𝑖 − 𝑦𝑖| (1) 

In the Eq. 1, xi is the actual data, yi represents 

the estimated data, and n shows the total 

number of the data. 

𝑅 =
∑ (𝑌 𝑎𝑐𝑡 − Ŷ 𝑎𝑐𝑡) (𝑌 𝑒𝑠𝑡 − Ŷ 𝑒𝑠𝑡 )𝑛

𝑖=1
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𝑖=1

(2) 

In the Eq. 2, Y act shows the actual values, Ŷ  
act is the average of the actual values, 𝑌 𝑒st 
represents the estimated values, and Ŷ 𝑒𝑠𝑡 is 

the average of the estimated values. 
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𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(3) 

In Eq. 3, RMSE is the root mean square error. 

Results and Discussion 

Statistical analysis  

In the current research, Pearson's 

correlation-coefficient was used to evaluate 

the correlations between the values of the used 

parameters. High correlation-coefficients 

indicated the common control factor between 

the parameters, based on which the parameters 

with the highest correlation-coefficient were 

selected as the most influential factors for the 

ANN structure. Table 2 shows the results of the 

correlation study. 

 Table 2. Pearson's correlation-coefficient 

O3 (ppb) CO (ppm) NOx (ppb) SO2 (ppb) 

PM10 -0.340** 0.503** 0.479** 0.538** 

PM2.5 -0.549** 0.684** 0.674** 0.620** 

Minimum daily temperature 0.653** -0.616** -0.569** -0.294**

Maximum daily temperature 0.425** -0.327** -0.210 0.005

Average daily temperature 0.625** -0.567** -0.464** -0.206

Total daily rainfall 0.109 -0.156 -0.213 -0.256*

Sunny hours 0.150 -0.040 0.076 0.054

Cloudy hours 0.268* -0.385** -0.494** -0.251*

Maximum daily wind speed 0.534** -0.494** -0.394** -0.274*

wind direction 0.404** -0.445** -0.262* -0.440**

Average wind speed (m.s) 0.820** -0.739** -0.525** -0.501**

Maximum humidity -0.591** 0.456** 0.234* 0.201

Minimum humidity -0.468** 0.355** 0.138 0.095

Average humidity -0.650** 0.515** 0.249* 0.211
* Correlation is significant at the 0.05 level.    ** Correlation is significant at the 0.01 level.

In order to prevent the ANN over-learning 

and adapting to the lack of the input data, only 

three network input parameters were used for 

the prediction of each variable. The variables 

were selected based on the highest correlation-

coefficients between the variable and predicted 

parameter. For the O3 parameter, the variables 

included the mean daily temperature, 

minimum daily temperature, and mean daily 

wind speed.  

For the NOx parameter, the input variables 

included the minimum daily temperature, 

mean daily wind speed, and PM2.5. For the SO2

parameter, the variables of mean daily wind 

speed, PM2.5, and PM10 were used. As can be 

seen, the air pollutants were significantly 

correlated with the meteorological parameters 

due to the fact that the meteorological 

parameters had a direct impact on the air 

pollutants. For instance, the wind variables 

could reduce the concentration of the 

pollutants if present or, and if not, they 

accelerated the production process of the 

secondary pollutants, which justified the high 

dependence. 

MLP-ANN 

Based on the selection of the inputs and 

outputs of four models for the modeling and 

prediction of the four parameters of air 

pollution using Pearson's correlation-

coefficient with various efforts and errors, the 

optimal results for the number of the hidden 

layers, transfer function, and learning rule 

were obtained (Table 3). Accordingly, the 

momentum learning rule and TanhAxon 

transfer function for the four models had the 

optimal results. In general, the MLP-ANN 

approach yielded accurate and acceptable 

results, which indicated the reliability of the 

tool for the management and prediction of air 

quality. 

Fig. 3 shows the overlap of the predicted 

values with the actual values. As can be seen, 

the horizontal axis was the sample number, the 

vertical axis showed the air pollution values, 

the continuous line indicated the observational 

values, and the dotted line showed the 

predicted values. Notably, when the two lines 

were closer, the model output was closer to 

reality, and the accuracy of the model was 
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higher, while the most accurate results were 

obtained when the two lines completely 

overlapped. 

Table 3. Structures and results of MLP-ANN models 

Parameter 
Number of 

inputs

Learning 

rule

Transfer 

function

Number of 

hidden layers

Processing 

Elements
NRMSE MAE R 

O3 3 Momentum TanhAxon 1 4 0.1246 1.343 0.9392 

CO 3 Momentum TanhAxon 1 4 0.5104 0.4793 0.9475 

NOx 3 Momentum TanhAxon 1 4 0.2207 5.8308 0.9320 

SOx 3 Momentum TanhAxon 1 4 0.4225 0.8633 0.8762 

Fig. 3. Desired network output and actual data 

Table 4. Structures and results of CANFIS models 

Parameter MF -FM Transfer-LR 
Structure 

(In put, PEs, Output) 
NRMSE MAE (mg.L) R 

O3 Bell-TSK Axon-Momentum 3,1,1 0.2428 1.7815 0.8773 

CO Bell-TSK Axon-Momentum 3,1,1 0.2118 0.2670 0.9106 

NO3 Bell-TSK Axon-Momentum 3,1,1 0.321 8.0504 0.9021 

SO2 Bell-TSK Axon-Momentum 3,1,1 0.2689 0.3203 0.8728 

CANFIS 

In the present study, the selected CANFIS 

structure in all the four models encompassed 

the bell for membership function, TSK for the 

fuzzy model, processing elements with Transfe 

Axon, and learning rule with the momentum as 

the proposed structure by the software. In 

addition, the superiority was confirmed by the 

repeated training and testing of the data. The 

results of the CANFIS method (Table 4) 

demonstrated that in all the parameters (except 

SO2), the CANFIS model has a weaker 

performance compared to the MLP-ANN 

method. However, the results showed that the 
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CANFIS approach also had significant 

capabilities for the modeling of the air quality 

in this range.  

Fig. 4 shows the comparison chart of the 

data predicted by the CANFIS models with the 

actual data. In general, the CANFIS method 

had lower accuracy in all the parameters, with 

the exception of SO2, for which both methods 

yielded similar results. 

       Fig. 4. Desired output and actual network output 

Conclusion 

With the physical development of 

urbanism, population growth, industrial 

development, and increased number of cars, 

the concerns regarding air pollution in 

Hamedan have increased, especially since the 

phenomenon of temperature inversion has 

occurred several times in winter, intensifying 

air pollution.  Meteorological parameters play a 

key role in the moderation or intensification of 

air pollution. Accurate methods are available 

for the prediction of meteorological variables.  

Therefore, the prediction of air pollutants 

based on these data could largely contribute to 

urban managers and planners in face of the 

adverse effects of air pollution on cities. 

In this study, artificial intelligence 

approaches were used to model and predict 

urban air pollutants (O3, CO, NOx, and SO2), 

which are the most important influential 

factors in air pollution.  According to the 

results, the MLP-ANN method was more 

accurate compared to the CANFIS method in 

the modeling and prediction of the air quality 

parameters. This model had the momentum 

learning rule and TanhAxon transfer function 

with three inputs, four neurons in one hidden 

layer, and coefficient of determination of 

higher than 90% and yielded remarkable 

outcomes.  Therefore, it could be concluded 

that the selected parameters were appropriate 

for the use and development of network 

structures, as well as the selection of the input 

variables based on the correlations between the 

variables, with the air pollutants reducing the 

number of the input variables and producing 

acceptable results.  Based on the results of the 

correlation-coefficients between the variables 

and output accuracy of the models, it could be 

inferred that daily temperature, wind speed, 
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and PM concentrations were the most 

important influential factors in the studied 

pollutants in Hamedan, which could be due to 

the time-space conditions of the study area as 

in the cold winters of Hamadan, fuel 

consumption for heating purposes increases 

noticeably, thereby leading to a significant 

increase in the air pollution in winter. Since 

Hamedan city is surrounded by the Alvand 

Mountains, the possibility of the accumulation 

of pollutants increases. Therefore, the effect of 

temperature is considered important in this 

range both in terms of pollutant production and 

acceleration of the processes between the 

pollutants. In addition, wind speed played a 

key role in the dispersion of the pollutants. 

Consistent with the previous studies, our 

findings emphasized on the high ability of 

ANN to model and predict parameters in 

complex natural environments, such as air 

pollutant forecasting. Therefore, this tool 

could replace the conventional deterministic 

models that have proven incapable in complex 

environments. In conclusion, ANN could be 

used as an early warning system before the 

occurrence of pollution in order to prevent or 

reduce the destructive effects of air pollution 

on Hamedan city.  
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