Variations of PM2.5 and Health Risk Assessment in the City of Mashhad During 2010-2018

Document Type : Original Article

Authors

1 Department of Environmental Health Engineering, Gonabad University of Medical Sciences, Gonabad, Iran

2 Department of Environmental Health, School of Health, Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran

10.34172/jaehr.1326

Abstract

Background: Air pollution stands as a significant environmental threat impacting human health across the globe, encompassing both developed and developing nations. This study aimed to survey the temporal variations of PM2.5 and gauge its potential health effects in the city of Mashhad over the period of 2010-2018.
Methods: This cross-sectional study was carried out among the residents of Mashhad city. PM2.5 concentration data spanning the years 2008-2019 were collected and subjected to analysis using Excel and AirQ software.
Results: The results indicate that the highest concentration of PM2.5 was associated with the year 2010, while the lowest concentration was observed in 2015. The analytical findings demonstrated that for each 10 μg/m3 increase in PM2.5 concentrations, the relative risk for total mortality increased by 10.47%. Furthermore, based on the Air Quality Index (AQI) results, 2010 exhibited the most adverse condition in terms of PM2.5 concentrations in Mashhad city.
Conclusion: In general, long-term exposure to ambient PM2.5 significantly contributed to mortality in the megacity of Mashhad. As air pollution is a modifiable risk factor, it is advisable to implement sustainable control policies to protect public health. 

Keywords

Main Subjects


  1. Naddafi K, Atafar Z, Faraji M, Ghanbarian M, Rezaei S, Ghanbari Ghozikali M, et al. Health effects of airborne particulate matters (PM10) during dust storm and non-dust storm conditions in Tehran. J Air Pollut Health. 2016;1(4):259- 68.
  2. Bełcik MK, Trusz-Zdybek A, Zaczyńska E, Czarny A, Piekarska K. Genotoxic and cytotoxic properties of PM2.5 collected over the year in Wrocław (Poland). Sci Total Environ. 2018;637- 638:480-97. doi: 1016/j.scitotenv.2018.04.166.
  3. Burdova EK, Vilcekova S, Meciarova L. Investigation of particulate matters of the university classroom in Slovakia. Energy Procedia. 2016;96:620-7. doi: 1016/j. egypro.2016.09.111.
  4. Kaviani Rad A, Shamshiri RR, Naghipour A, Razmi SO, Shariati M, Golkar F, et al. Machine learning for determining interactions between air pollutants and environmental parameters in three cities of Iran. Sustainability. 2022;14(13):8027. doi: 3390/ su14138027.
  5. Taghizadeh F, Jonidi Jafari A, Kermani M. The trend of air quality index (AQI) in Tehran during (2011-2016). J Air Pollut Health. 2019;4(3):187-92. doi: 18502/japh.v4i3.1548.
  6. Borhani F, Shafiepour Motlagh M, Ehsani AH, Rashidi Y. Evaluation of short-lived atmospheric fine particles in Tehran, Iran. Arab J Geosci. 2022;15(16):1398. doi: 1007/s12517- 022-10667-5.
  7. Kermani M, Bahrami Asl F, Aghaei M, Arfaeinia H, Karimzadeh S, Shahsavani A. Comparative investigation of air quality index (AQI) for six industrial cities of Iran. Studies in Medical Sciences. 2014;25(9):810-9. [Persian].
  8. Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci. 2016;21:65. doi: 4103/1735-1995.189646.
  9. Nemati F, Mahvi A, Mohseni SM. Health impacts of NO2 in Mashhad, Iran. J Air Pollut Health. 2016;1(1):15-20.
  10. Hassanvand MS, Naddafi K, Faridi S, Arhami M, Nabizadeh R, Sowlat MH, et al. Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos Environ. 2014;82:375-82. doi: 1016/j.atmosenv.2013.10.048.
  11. Shen Z, Cao J, Arimoto R, Han Z, Zhang R, Han Y, et al. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos Environ. 2009;43(18):2911-8. doi: 1016/j.atmosenv.2009.03.005.
  12. Singh DP, Gadi R, Mandal TK. Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmos Environ. 2011;45(40):7653-63. doi: 1016/j.atmosenv.2011.02.058.
  13. Liu H, Zhang X, Zhang H, Yao X, Zhou M, Wang J, et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Atmos Environ. 2018;233:483-93. doi: 1016/j.envpol.2017.10.070.
  14. Mikel DK. Quality Assurance Guidance Document: Model Quality Assurance Project Plan for the National Air Toxics Trends Stations. xxxx; 2002.
  15. Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, et al. Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006-2015. Environ Int. 2018;114:37- 49. doi: 10.1016/j.envint.2018.02.026.
  16. Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, et al. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah city, Saudi Arabia. Atmos Pollut Res. 2012;3(3):331-40. doi: 10.5094/apr.2012.037.
  17. Marcazzan GM, Ceriani M, Valli G, Vecchi R. Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modelling. Sci Total Environ. 2003;317(1):137-47. doi: 10.1016/s0048-9697(03)00368-1.
  18. Yatkin S, Bayram A. Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Sci Total Environ. 2008;390(1):109-23. doi: 10.1016/j.scitotenv.2007.08.059.
  19. Abu-Allaban M, Lowenthal DH, Gertler AW, Labib M. Sources of PM10 and PM2.5 in Cairo’s ambient air. Environ Monit Assess. 2007;133(1):417-25. doi: 10.1007/s10661-006-9596-8.
  20. Saliba NA, El Jam F, El Tayar G, Obeid W, Roumie M. Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmos Res. 2010;97(1-2):106-14. doi: 10.1016/j.atmosres.2010.03.011.
  21. Ho KF, Lee SC, Chan CK, Yu JC, Chow JC, Yao XH. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos Environ. 2003;37(1):31-9. doi: 10.1016/s1352-2310(02)00804-x.
  22. Kim KH, Choi GH, Kang CH, Lee JH, Kim JY, Youn YH, et al. The chemical composition of fine and coarse particles in relation with the Asian Dust events. Atmos Environ. 2003;37(6):753- 65. doi: 10.1016/s1352-2310(02)00954-8.
  23. Gummeneni S, Yusup YB, Chavali M, Samadi SZ. Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmos Res. 2011;101(3):752-64. doi: 10.1016/j.atmosres.2011.05.002.
  24. Gholampour A, Nabizadeh R, Hassanvand MS, Taghipour H, Faridi S, Mahvi AH. Investigation of the ambient particulate matter concentration changes and assessing its health impacts in Tabriz. Iran J Health Environ. 2015;7(4):541-56. [Persian].
  25. Mirhosseini SH, Birjandi M, Zare MR, Fatehizadeh A. Analysis of Particulate matter (PM10 and PM2.5) concentration in Khorramabad city. Int J Environ Health Eng. 2013;2(1):3. doi: 10.4103/2277-9183.106635.
  26. Piringer M, Kukkonen J. Mixing height and inversions in urban areas. In: Proceedings of the Workshop. Vol 3. Finnish Meteorological Institute; 2002.
  27. Soltani Gord Faramarzi T, Mofedi A, Gandomkar A. Synoptic analysis of the severe polluted days in the city of Mashhad. Journal of Spatial Analysis Environmental Hazards. 2016;2(4):95-112. doi: 10.18869/acadpub.jsaeh.2.4.95. [Persian].