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ABSTRACT 

Considering the complexity of hydrological processes, it seems that multivariate methods may 

enhance the accuracy of time series models and the results obtained from them by taking more 

influential factors into account. Indeed, the results of multivariate models can improve the results of 

description, modeling, and prediction of different parameters by involving other influential factors. 

In this study, univariate models (ARMA) and auto-correlated multivariate models with the 

simultaneous autoregressive moving average model (CARMA) were evaluated for modeling 

Electrical Conductivity and Total Dissolved Solid parameters of the western stations of Urmia Lake 

Basin. To use the CARMA models, annual flow rate time series, EC, TDS, SAR, and pH values 

measured across seventeen hydrometric stations between 1992 and 2013 were used. In the studied 

statistical period, the river flow in the west of Urmia Lake Basin decreased and experienced an 

incremental increase compared to the EC and TDS values in river flow. By applying influential 

parameters in CARMA models, the mean error value of the model in training and experimental stages 

reduces by 32% and 44% for EC values and 34% and 36% for TDS values, respectively.  

Keywords: Time series model, ARMA, CARMA, water quality, Urmia Lake

Introduction 

Predicting hydrological parameters has 

always been of interest to water engineers, 

owing to their significance in the analysis of 

drought and water supply, such as designing 

water establishments, river dewatering, 

planning for exploiting the reservoirs of dams, 

and controlling erosion and sedimentation of 

rivers. Considering how restricted the use of 

exploitable freshwater resources is, accurate 

prediction of the flow rate of hydrological 

parameters is one of the primary bases of 

planning and managing water resources. Water 

quality modeling is one of the major interests of 

water experts because it can directly influence 

human’s life.1 Electrical Conductivity and Total 
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Dissolved Solid values are both the important 

parameters in water quality.2 This paper outlines 

the modeling of these two issues. Several 

authors have attempted to predict these 

parameters like3 modeling EC on ground water,1 

Karamouz for river water quality,4 Orouji et.al 

on water quality.5 Accordingly, experts are 

always developing models to better estimate 

river flow rates accurately, modified from 

current methods.2,5–8 So, far, various models 

have been proposed to simulate hydrological 

and meteorological parameters of an area 

through deterministic modeling. For example, 

one can mention precipitation-runoff conceptual 

models, time series linear patterns, genetic 

programming, and hybrid combinational 

models.The first group of models is based on 

physical characteristics of the system, presented 

in the form of differential equations. 

Groundwater movement and water balance 

equations, as well as distributed routing, are 

some examples of these models. The second 

group of models is based on   geomorphological 
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characteristics of the hydrological system of 

interest; precipitation-runoff models belong to 

this group. Some experimental models attempt 

to develop a relationship between input and 

output data with no consideration of physical 

parameters. These models are known as black 

box models. This group of models can include 

the experimental relationships of estimation of 

focus time and interception calculation models. 

The first application of linear models for time 

series in hydrology was performed by Thomas 

and Firing.9 These models include the 

autoregressive moving average model (ARMA) 

,10 with constant parameters, and the models 

derived from it, including autoregressive models 

(AR), moving average (MA) and cumulative 

autoregressive moving average1 (ARIMA), 

which together use methods for estimating the 

model parameters and goodness of fit. 

Furthermore, periodic models in which the 

model's parameters are not constant were 

introduced and presented four processes in 

which a periodic characteristic is observed in the 

parameters, including the periodic 

autoregressive models (PAR) and periodic 

autoregressive moving average model 

(PARMA). Zou et al compared two models:  

ARIMA and the artificial neural network for 

predicting water capacity and soil salt.11 They 

showed that the ARIMA model resulted in 

greater accuracy. Investigating the review of the 

literature, it seems that multivariate time series 

models, such as CARMA, have not been used in 

modeling of qualitative parameters. The aim of 

this research is to model qualitative parameters 

of Urmia Lake Rivers within the period of 

1992–2013.  

northwest of Iran between 35° and 58' until 39° 

and 46' of northern latitude and 44° and 3' until 

47° and 23' of eastern longitude. The area of this 

basin, taking Urmia Lake into account, is 43,660 

km2. The Basin of Urmia Lake is one of the most 

important regional basins of Iran, situated in the 

northwest of Iran. This basin, with an area of 

52,700 km2 and accounting for 3.21% of the 

entire country's area, lies between 35° and 40' 

until 38° and 29' of northern latitude and the 

meridian of 44° 13' and 47° 53' of eastern 

longitude. The position of the stations studied 

across western Azerbaijan Province is shown in 

Fig1.  

 
                           Fig. 1. Location of the study area in the region, Iran and the location of 17 hydrometric 

                           stations studied 

                                                           
1   Autoregressive Integrated Moving Average  

The studied regions

West Azerbaijan Province is situated in the 
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The statistical specifications of the applied 

data are presented in Table 1.  The 17 

hydrometric stations of Iran with their elevation 

and also geographic properties are shown in this 

table. 

                                    Table 1. Specifications of hydrometric stations used in this study                     

Station 

number Station Elevation 

(m) 
Geographic properties 
X Y 

1 Abajalo 1280 -14887.763 4191113.096 

2 Alasagel 1700 145621.718 4045364.055 

3 Babarood 1283 -7710.074 4155233.042 

4 Balegchi 1350 -1938.191 4102023.035 

5 Bitas 1408 26194.05 4071683.848 

6 Chehriq 1520 -62376.418 4234508.762 

7 Ghasemlo 1340 -18412.351 4149635.085 

8 Gerdyaghob 1280 30105.376 4107642.735 

9 Hashemabad 1447 -37821.81 4145565.016 

10 Kotar 1360 19675.413 4076349.532 

11 Oshnaviyeh 1471 -25770.773 4116232.916 

12 Pey-gale 1487 -31187.653 4111057.45 

13 Pol-Anian 1425 88485.401 4016034.688 

14 Pol-Miandoab 1290 59386.185 4101951.86 

15 Sari Ghamish 1380 96363.496 4046881.692 

16 Tapik 1380 -38605.124 4188292.51 

17 Urban 1700 -49348.359 4261336.985 

Materials and Methods 

ARMA multivariate models  
There are various methods required in the 

analysis and modeling of hydrological time 

series. The characteristic of certain concurrent 

models is diagonal parameter matrices, whose 

estimation of its parameters is independent of 

univariate models. Among multivariate linear 

models12 are a multivariate auto-regressive 

model (MAR) (p), concurrent ARMA, known as 

CARMA, combinational model of concurrent 

and moving average (CARMA) (p,q), known as 

CSM-CARMA (p,q), and a seasonal 

multivariate auto-regressive periodic model 

(MPAR)(p). Modeling of multivariate 

hydrological processes based on the complete 

multivariate model of ARMA often develops 

problems in the estimation of its parameters. 

The CARMA model was suggested as a simpler 

substitute for the complete multivariate ARMA 

model. 13   In      the  CARMA  (p,q)  model,   the 

matrix of the parameters of both auto-regressive 

and moving average models are assumed to be 

diagonal, whereas a multivariate model can be 

considered to be independent of the univariate 

ARMA model. Therefore, instead of estimating  

the model's parameters jointly, they can be 

estimated independently for every univariate 

ARMA site. This results in the identification of 

the best univariate ARMA model. Therefore, if 

a complete multivariate ARMA model is used, 

then the different dependence structures in time 

can be considered a similar dependent structure 

in time for all sites, instead of modeling it for 

every site.  

The CARMA (p,q) model for n sites can be 

shown as follows: 

(1) εθεYφY jt

q

1j j

_

t

p

1i jtjt __ ∑∑
==

+=
 

Where, Yt is a n*1 column matrix from the 

observational series of Yk
t with a normal 

distribution and means of zero as a 

representative of different sites of k = 1,2,…, n. 

Then, φ1,φ2,…,φn is a n*n diagonal matrix of the 

parameters of the autoregressive model and θ1, 

θ2,…, θq is the n*n diagonal matrix of the 

parameters of the moving average model. εt is 

also a n*1 matrix of normal random data with a 

mean of zero and variance-covariance of g.  

The  CARMA   model    is   able    to   keep   
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interactive correlation zero delays across 

different sites. In addition, the dependence of 

time structure for each site has been defined by 

p and q parameters.13  

Estimation of model's parameters 

By considering N years of data in every 

site, i, with observational data of Y(i)
t and I = 1, 

2,…, n, the matrix of the general model of Yt is 

described as follows:  

    (3) ZY tt
σμ+=

 

Where µ and σ are the mean and variance of Yt. 

Standardization of variables is calculated by the 

following relationship: 
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The parameters of model CARMA (p(i), 

q(i)) is determined as with the parameters of the 

ARMA model. The model's remaining time 

series is independent of time, but is dependent 

among itself (is dependent on the space). This 

interactive dependence can be modeled using 

the following relationships: 
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relationship: 
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)i(

t
is the mean of N-K data, i, and ε

)i(

kt +

is the N-K mean of data, j. Finally, the matrix of 

the parameters of model CARMA (p, q) is 

obtained by the following relationship.14  

   (10) 
1

011

_

M̂M̂Â =
                                                                           

Evaluation of the model  
Two criteria were used to evaluate the 

performance of the model, the coefficient of 

determination and root mean square error2 . 

Greater model accuracy was determined by 

lower RMSE and higher coefficient of 

determination values. 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑡− 𝑥𝑡)2

𝑇
𝑡=1

𝑇
                               (11)                                                               

                             (12)                                                                                                   

Where in the above relations xt, �̂�𝑡،, and  are 

the data of observational series, calculated 

series, and mean, respectively, with T 

representing the number of data points. 

The results of modeling of EC and TDS 

Following the primary investigation of the 

studied data, the results showed that the studied 

time series data became normalized using 

logarithm, power, and gamma functions 

transformations along with appropriate 
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skewness coefficients. First, univariate time 

series models (ARMA) were investigated. The 

results indicated that based on Akaike criterion, 

the ARMA (1, 0) model was chosen for all of 

the stations. Data are divided for training 

(calibration of models) and also for testing. Data 

for this research was obtained from 1992 to 

2013. The first 17 years was used to training the 

model and also considering five years of the data 

belonging to the end of the study period as the 

data of the experimental state(testing).To access 

how the models perform two statistical 

parameters for accuracy (correlation coefficient) 

and the model's error (root mean square error) 

were examined. These results at training and 

experimental stages are presented in Table 2.  

Following an investigation of the univariate 

models, the normalized data were modeled 

using multivariate models, considering the mean 

data of annual flow rate, mean sodium 

absorption ratio, electrical conductivity, 

salinity, and pH as input variables. Using the 

normalized and standardized data under 

investigation, CARMA (1, 0) model was 

considered as the best model with the lowest 

variance among the other models.  

As an instance, the parameters and remaining 

Table 2. The results of the study and verification of the 

model ARIMA in modeling EC and TDS values           

Station 
Station 

number 

TDS EC 

Root Mean 

Square Error 

Root Mean 

Square Error 

Test Train Test Train 

Abajalo 1 17.69 18.16 24.02 22.81 

Alasagel 2 19.16 30.97 42.82 36.34 

Babarood 3 32.15 23.99 16.29 22.91 

Balegchi 4 12.44 28.98 31.93 33.23 

Bitas 5 27.47 35.93 45.17 34.88 

Chehriq 6 33.79 28.53 28.51 30.64 

Ghasemlo 7 27.90 28.85 25.99 26.25 

Gerdyaghob 8 27.18 27.61 25.01 30.47 

Hashemabad 9 12.26 27.68 36.02 30.69 

Kotar 10 13.19 24.05 21.03 27.26 

Oshnaviyeh 11 13.43 23.51 23.40 24.86 

Pey-gale 12 26.49 23.58 40.62 29.33 

Pol-Anian 13 15.74 21.21 15.84 32.71 

Pol-Miandoab 14 16.32 26.13 19.69 21.49 

Sari Ghamish 15 27.21 23.69 25.13 26.36 

Tapik 16 17.85 20.59 21.43 26.01 

Urban 17 25.90 26.19 32.80 28.04 

coefficients of CARMA (1, 0) model related to 

Sari Ghamish Station were presented as 

Equations (13) and (14), and the Equation of 

CARMA (1, 0) models were also presented as 

Equation (15). 

)13(         
1
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)  

are the observation data of the previous period 

of the values of EC, TDS, flow rate, pH, and 

SAR, respectively. The results of modeling the 

EC and TDS values of the hydrometric stations 

in Urmia Lake basin using CARMA model are 

The results of the investigation the 

accuracy of CARMA and ARMA models 

presented in Fig. 2. To examine the validation 

of the multivariate model, the last five years of 

the observational data between 2008 and 2013 

were modeled and predicted.  
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indicated that across all of the studied stations, 

the accuracy and error of the multivariate time 

series model are better than the univariate 

ARMA model. 

 
              Fig. 2. The results of EC and TDS data modeling discussed in Gerd-e Yaghub station 

The results of the error and the 

correlation between historical and modeled data 

are summarized in Tables 3 and 4.  

By setting EC, TDS, SAR, pH, and 

annual flow rate values of the studied stations as 

the input of CARMA model and gaining output 

from EC and TDS parameters, the results 

indicated that considering the effects of the 

river's flow rate and qualitative parameters in 

relation with each other and regarding 

consideration of a weight for every parameter 

for CARMA model, the results of modeling by 

this model (CARMA) will be satisfactory. The 

advantage of the CARMA model in comparison 

with the typical ARMA model relates to 

involving other parameters which may influence 

the parameter of interest. By involving an 

influential parameter, such as the river's flow 

rate, in the modeling of EC and TDS parameters, 

the modeling accuracy can be enhanced to a 

large extent. This is because by increasing or 

decreasing the river's flow rate, the extent of 

mineral concentrations present in river's water 

also        changes,      thereby      affecting      the 

 EC and TDS values.  
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         Table 3. The results of the study and verification     

         CARMA model in modeling EC values 

Station 

Correlation 

Coefficient 

Root Mean 

Square Error 

Test Train Test Train 

1 0.97 0.89 7.70 17.19 

2 0.95 0.92 13.00 20.30 

3 0.71 0.90 17.18 22.57 

4 0.98 0.97 9.89 15.16 

5 0.09 0.19 42.65 39.89 

6 0.53 0.52 21.95 24.15 

7 0.95 0.81 21.50 21.02 

8 0.95 0.99 21.14 18.25 

9 0.88 0.93 8.26 10.80 

10 0.98 0.92 8.76 16.39 

11 0.83 0.71 14.68 19.82 

12 0.94 0.86 9.72 17.78 

13 0.94 0.94 10.91 14.06 

14 0.997 0.98 13.28 20.51 

15 0.85 0.92 10.37 12.37 

16 0.80 0.78 8.56 14.76 

17 0.31 0.94 24.61 23.30 
 

       Table 4. The results of the study and verification 

       CARMA model in modeling the values of TDS 

Station 

Correlation 

Coefficient 

Root Mean 

Square Error 

Test Train Test Train 

1 0.97 0.88 10.65 13.19 

2 0.73 0.74 18.58 25.80 

3 0.71 0.91 11.16 15.15 

4 0.99 0.91 12.40 22.35 

5 0.08 0.19 27.44 25.93 

6 0.55 0.51 21.95 27.05 

7 0.78 0.76 19.89 17.99 

8 0.97 0.99 14.95 15.80 

9 0.63 0.90 8.26 11.01 

10 0.91 0.70 10.79 21.39 

11 0.78 0.67 13.00 13.93 

12 0.58 0.76 15.24 14.07 

13 0.94 0.86 5.88 14.84 

14 0.83 0.98 14.39 13.97 

15 0.99 0.90 3.77 8.50 

16 0.82 0.73 8.88 11.59 

17 0.31 0.92 16.78 14.33 

The results of an investigation of 

multivariate models in the modeling of different 

parameters suggest increased modeling 

accuracy in multivariate models in comparison 

with univariate models. The results of modeling 

TDS values at the stations studied across the 

Urmia lake basin showed that CAMRA models 

have a good fit on real data, and the TDS data 

model fit the studied region well. Among the 

studied stations, the hydrometric station 15(Sari 

Ghamish) with a RMSE value of 3.77 for TDS 

in the training stage and 8.50 in the experimental 

stage resulted in the lowest error value among 

other studied stations. Other studied stations 

also presented a good fit along with a suitable 

RMSE within the confidence interval. Among 

the studied stations, station 6 (Chehriq), with a 

RMSE value of 27.05 for TDS in the training 

stage, had the highest error value, which lies in 

the 95% confidence interval. In the 

experimental stage, station 5 with a RMSE value 

of 27.44 for TDS has the highest error value. 

Overall, the results showed that the value of the 

error calculated in the experimental stage lays 

within the confidence interval of 95% for all of 

the studied stations. This investigation 

determined that EC and TDS values present in 

the Urmia Lake basin were satisfactorily 

modeled by the CARMA model. Among the 

stations studied in Urmia lake basin for EC 

values, station 9, with a RMSE value of 10.80 

mho/cm, had the lowest error value in the 

experimental stage, where this error value in the 

experimental stage reaches around 8.26 

mho/cm. The largest error value is related to 

Station 5 with a RMSE value of 39.89 mho/cm 

in the training stage, where this error value 

reaches by about 42.65 mho/cm in the 

experimental stage. In all of the studied stations, 

RMSE values have lied within the confidence 

interval range and the model's error value is 

acceptable. The mean RMSE value in the 

modeling of EC values is 15.37 mho/cm in the 

training stage and 19.4 mho/cm in the 

experimental stage. For TDS values, they are 

16.69 and 13.75, respectively.  

The results showed that considering the 

conditions of available data the CARMA model 

was a suitable substitute for the ARMA models. 

As shown by Camachu15 and Mcleud and 

Hippel,16 considering the development of 

simulation techniques, the CARMA model is a 

suitable substitute for ARMA models. The 

results of the investigation of the flow rate 

changes of the studied stations indicated that 

within the statistical period of 1992–2013, the 

flow rate of the majority   of   rivers   decreased, 

while the variations in the EC and TDS 

parameters increased. Considering the reduction  

in the river's flow rate and the volume of the 

water  flowing  in  the  rivers   leading  to  Urmia  

Lake, the concentration of the existing minerals 

would have increased, resulting in elevated EC 

and TDS values. With the ever-decreasing trend 

of Urmia lake water level and elevation of EC 
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and SAR, many environmental risks, including 

salinization of the soil around the lake, are 

possible. For the next steps in predicting water 

level of Urmia Lake and also prediction of 

quality parameters, it is suggested that 

considering the significance of the issue and 

using the multivariate time series models of 

ARMA family and other data driven methods, 

for river's water as well as the flow rate. 

Conclusion 

A model comparison of the ARMA (1, 0) 

model and multivariate CARMA (0,1) model 

was performed using the aforementioned data. 

In all of the studied stations, the results of an 

investigation of the accuracy and error of the 

two mentioned models for EC and TDS values 

indicated that the multivariate time series model 

achieved better results. This is probably due to 

the involvement of other parameters that 

influence EC and TDS values. It seems that 

multivariate time series models present better 

results owing to involving influential 

parameters than univariate models that use the 

memory of a time series. Further, by considering 

different weights for all of the involved 

parameters, it is possible to determine the extent 

of influence of every parameter. By comparing 

the error values of the two mentioned model in 

modeling EC and TDS values, the results 

indicated that by applying influential parameters 

and CARMA models the mean error value of the 

model in training and experimental stages 

diminishes by 32% and 44% for EC values and 

by 34% and 36% for TDS values, respectively.  
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