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AbstractAbstractAbstractAbstract 
Application of a reliable forecasting model for any water treatment plant (WTP) is essential in order to provide a 
tool for predicting influent water quality and to form a basis for controlling the operation of the process. This would 
minimize the operation and analysis costs, and assess the stability of WTP performances. This paper focuses on 
applying an artificial neural network (ANN) approach with a feed-forward back-propagation non-linear 
autoregressive neural network to predict the influent water quality of Sanandaj WTP. Influent water quality data 
gathered over a 2-year period were used to building the prediction model. The study signifies that the ANN can 
predict the influent water quality parameters with a correlation coefficient (R) between the observed and predicted 
output variables reaching up to 0.93. The prediction models developed in this work for Alkalinity, pH, calcium, 
carbon dioxide, temperature, total hardness, turbidity, total dissolved solids, and electrical conductivity have an 
acceptable generalization capability and accuracy with coefficient of determination (R2) ranging from 0.86 for 
alkalinity to 0.54 for electrical conductivity. The predicting ANN model provides an effective analyzing and 
diagnosing tool to understand and simulate the non-linear behavior of the influent water characteristics. The 
developed predicting models can be used by WTP operators and decision makers.  
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Introduction1    

To maintain a stable performance in a water 
treatment plant (WTP), it is desirable to know in 
advance the influent water characteristics of the 
WTP. Water characteristics such as turbidity, 
total suspended solids, and pH are important 
water quality parameters. There is a significant 
relationship between these parameters and the 
amounts of coagulants and flocculants used in 
treatment processes. Prediction of the influent 
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water characteristics is helpful in the optimal 
scheduling of the coagulation and flocculation 
process. In practice, the influent water 
characteristics are usually estimated by the 
operators based on experience and or using 
online sensors. Such estimations, however, are 
not accurate enough to manage WTPs, especially 
for operators that want to manage the WTP 
performance for the next day. The precipitation 
may cause large variability of the influent water 
characteristics, thus reducing the efficiency of 
WTPs. Moreover, heavy rainfall overwhelms the 
water treatment system, causing spills and 
overflows. Thus, prediction models for water 
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quality characteristics, based on their registered 
historical data, can be built by the data mining 
approach.1 Data mining is a promising approach 
for building prediction models. It is the process 
of finding patterns from data by algorithms 
versed on the crossroads of statistics and 
computational intelligence.2 

Artificial neural networks (ANNs) are one of 
the most accurate and widely used data mining 
processes and forecasting models. It has been 
shown that a network can approximate any 
continuous function to any desired accuracy. 
ANNs are nonlinear and non-parametric 
methods, and unlike traditional approaches, 
such as the Box–Jenkins or ARIMA, do not 
assume that the time series under study are 
generated from linear processes. However, they 
may be inappropriate if the underlying 
mechanism is nonlinear. In fact, real world 
systems are often nonlinear.3 Artificial neural 
networks have been found to be a viable 
contender to various traditional time series 
models.4,5 Lapedes has reported the first attempt 
to model nonlinear time series with artificial 
neural networks.6 Imrie et al. have reported the 
application of ANN for the river flow 
prediction.7 Wu and Lo used the ANN to model 
the nonlinear relationship between accumulated 
input and output numerical data for the 
coagulation processes in water treatment.8 
Melessea et al. have presented the application of 
a multilayer perceptron (MLP) ANN with an 
error back propagation algorithm for the 
prediction of suspended sediment load of river 
systems.9 An ANN data driven modeling 
approach was used by Huo et al. to predict the 
water quality indicators of Lake Fuxian, the 
deepest lake of southwest China.10 Patil et al. 
have presented a study of predicting sea surface 
temperature with nonlinear autoregressive 
neural networks.11 

In this study, we used an ANN approach to 
predict daily influent water characteristic to 
Sanandaj water treatment plant. This paper 
presents a data-mining approach to predict 
influent water characteristic in a WTP for a 

short-term period (one day ahead). In this work, 
the proposed approach is based on the classical 
nonlinear autoregressive time series using time-
lagged feed-forward networks, in which the data 
from the daily time series are used to forecast the 
next day. In this study the prediction models are 
developed for alkalinity (Alk), pH, calcium (Ca), 
carbon dioxide (CO2), temperature (T), total 
hardness (TH), turbidity (Tur), total dissolved 
solids (TDS), electrical conductivity (EC), and 
chloride (Cl) as the influent water characteristics. 
The models output is evaluated using statistical 
indices and observed water quality data. 

Materials and Methods 

ANN model was developed to predict the 
characteristic parameters of influent water of 
Sanandaj water treatment plant. This plant is one 
of the oldest water treatment plants in Iran. It is 
located in the northeast of the city of Sanandaj at 
an altitude of 1510 meters above sea level and 
near Nanaleh village road. Nominal design 
capacity of the treatment plant is 0.7 cubic 
meters per second, and can increased up to  
1.5 cubic meters per second when needed. The 
raw water is supplied from Gheslagh dam.  
The water is transferred through a concrete and 
steel transmission line, with the length of  
8 kilometers, by gravity force. The treated water, 
after disinfection and storage, is pumped by a 
steel transmission pipeline with the length of  
2.2 km to Faizabad storage tank and then the 
distribution network. Registered daily historical 
data of the influent water quality parameters 
including carbon dioxide, total hardness, 
chloride, total calcium, total dissolved solids, 
total alkalinity, electrical conductivity, pH, 
turbidity, and temperature were used to conduct 
the study. The data was provided by the urban 
Water and Wastewater Company of Kurdistan 
and collected over a 2-year period. This period 
was satisfactory as it covered all probable 
seasonal variations in the studied variables. 

The numbers of data points for plant data 
used for the training and test data sets together 
are 707 points. The description of the variables, 
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units of measure, range of the data, together 
with the mean and standard deviation of the 
plant’s raw data are presented in table 1. 
Artificial Neural Network is an information 
processing tool that is inspired by systems such 
as biological nervous systems. The objective of a 
neural network is to compute output values 
from input values by some internal 
calculations.12 

Neural network is trained to construct the 
specific black box function by adjusting the 
values of the connections (weights) between 
layers of elements based on a comparison of the 
output and the target until the network output 
matches the target.13 

Figure 1 illustrates neural network training 
structure. There are many different types of  

training algorithms. One of the most common 
classes of training algorithms for feed forward 

neural networks (FFNNs) is called back 
propagation (BP).14 

The basic component of a neural network is 
the neuron, also called node. Figure 2 illustrates 
a single node of a neural network. The inputs are 
represented by a1, a2, and an, and the output by 
Oj. Several signals can be inserted into the node. 
The node manipulates these inputs in such a 
way to give a single output signal. The values 
W1j, W2j, and Wnj, are weight factors associated 
with each of the inputs to the node. The other 
input to the node, bj, is the node’s internal 
threshold, also called bias. This is a randomly 
chosen value that governs the node’s net input 
through the following equation:15 

 
Table 1. Raw influent water characteristics data of Sanandaj, Iran water treatment plant (WTP) 

 Mean (µ) SD Min Max µ-4SD µ+4SD 
CO2 3.24 10.89 0.10 199.00 -40.32 46.80 
TH 153.51 11.79 122.00 205.00 106.35 200.66 
Cl 9.40 7.63 5.50 160.40 -21.12 39.92 
Ca 47.14 7.01 32.40 146.30 19.12 75.17 
TDS 209.87 19.16 157.00 252.00 133.22 286.53 
Alk 157.95 16.57 0.00 193.00 91.68 224.23 
EC 332.56 138.65 0.00 3337.00 -222.03 887.15 
pH 8.47 7.18 7.16 175.90 -20.24 37.17 
Tur 3.71 5.26 0.50 65.00 -17.33 24.76 
T 11.42 6.31 2.00 90.00 -13.81 36.64 

SD: Standard deviation; TH: Total hardness; TDS: Total dissolved solids; Alk: Alkalinity; EC: Electrical conductivity; Tur: 
Turbidity; T: Temperature  
 

 
 

Figure 1. Neural network training structure 
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Figure 2. Single node anatomy 
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The transfer function can transform the 
node’s net input in a linear or non-linear 
manner. Commonly used transfer functions in 
hidden layer are sigmoid transfer function and 
hyperbolic tangent transfer function as follows:15 

• Sigmoid transfer function 

xe
xf −+

=
1

1
)(       1)(0 ≤≤ xf  

• Hyperbolic tangent transfer function 
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The neuron’s output Oj is found by 
performing linear function on the hidden layer 
neuron’s outputs as follows:15 

• Linear transfer function 

xxf =)(     +∞<<∞− )(xf  

Neural networks very rarely operate directly 
on the raw data, although this is possible. The 
disadvantage of using raw data values is that the 
training time for the neural network would be 
significantly longer as the various variables have 
very different ranges. Data pre-processing can 
have a significant effect on the generalization 
performance of a supervised neural network.16 

Plant data is, most often, not very reliable and 
many problems can occur which can affect the 

reliability or integrity of the data. Missing data is 
a common problem in statistical analysis.17 

Tarassenko proposes some strategies to deal 
with missing data.18 One method consists of 
replacing the missing data value by its mean or 
median across the training set.19 The other 
method is to estimate the missing value for an n-
dimensional input vector from knowledge of the 
other n-1 input variables. The last method uses 
either a linear model or a NN network to predict 
the nth value given the set (n-1)-dimensional 
vectors as inputs. The approach eventually 
adopted was to use a linear interpolation 
method to replace the missing data values in the 
Sanandaj WTP plant data set. In a few instances, 
the missing data points were consecutive, but 
this did not extend to more than 5 consecutive 
missing points. 

Data that appear to be very distant from the 
normal data distribution may be classified as 
being outliers. In certain instances however, this 
outlying value may be correct and is a natural 
product of the variables distribution.20 One 
approach for data rejection is to plot the 
histogram of the data distribution and then 
carefully scrutinize the data which appear as 
outliers. The standard deviation based outlier 
analysis is also a mechanism for revealing values 
that are numerically distant from the rest of the 
data. In this study, we took a normal distribution 
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with cutoff 4 standard deviations from the mean 
to detect the outliers. Thus, the data that were 
more extreme than µ ± 4SD were considered as 
outliers.  

Neural networks can be trained by using raw 
data as inputs, but the training time will be 
considerably longer. However, if scaled data is 
presented to the network, the weights can 
remain in small, similar predictable ranges. Box-
cox transforms non-normally distributed data to 
a set of data that has approximately normal 
distribution. The Box-Cox transformation is a 
family of power transformations. The values of λ 
parameter for studied variables are shown in 
table 2. These values were not zero for all water 
characteristic parameters and the transformation 
of data was performed according to the 
following relationships:  

If λ is not = 0, then      
λ

λ
λ 1

)(
−= data

data  

If λ is = 0, then              
)log()( datadata =λ

 
After pre-processing the raw data, the neural 
network model was created in MATLAB 
software (version 7.12; Mathworks Inc., USA) 
that offers a platform for the simulation 
application. A nonlinear autoregressive (NAR) 
time series neural network was used and trained 
to predict the variable for the next day from that 
series’ past values. The NAR is a network with 
feedback arrangement as shown in figure 3. In 
NAR network, there is only one series involved. 

The future values of a time series y (t) are 
predicted only from past values of that series. 
This form of prediction is called nonlinear 
autoregressive and can be written as follows: 

))(),...,1(),(()1( dtytytyfty −−=+  

The network was trained using the common 
algorithm of Levenberg-Marquardt. The network 

had non-linear sigmoid transfer function for the 
hidden layer and a linear transfer function for the 
output layer neurons. The number of feedback 

delays was determined by depicting partial 
autocorrelation function (PACF). The numbers of 
delays in PACF chart with a significant 
correlation coefficient were considered as the 

numbers of feedback delays. The numbers of 
feedback delays are shown in table 2. The other 
network properties are as follows: 

• Network type: Feed-Forward Back-
Propagation 

• Training function: TRAINLM 

• Performance function: MSE 

• Number of hidden layers: 1 
Hidden layer size: A single hidden layer with 

different count of neurons (i.e. 1 to 20) has been 
assessed for this study. As shown in figure 4 the 
performance of the network decreased almost by 
increasing the hidden layer size. These decreases 
are more considerable almost after ten sizes for 
neurons in all models. Thus, in this study 10 
neurons were considered as the maximum 
possible size for the hidden layer for all models. 

 
Table 2. Pre-processed influent water characteristics data and number of feedback delays 

 
Description and unit of measure Min. Median Mean Max. SD λ 

Feedback 
Delays* 

CO2 Carbon dioxide (mg/l) 0.10 2.3 2.6 8.2 1.5 0.41 6 
TH Total Hardness (mg/l) 122.00 155.3 154.0 197.2 10.1 1.86 4 
Cl Chloride (mg/l) 5.50 9.0 8.9 12.5 1.2 -0.20 8 
Ca Calcium (mg/l) 32.40 48.0 47.2 59.8 4.0 2.43 6 
TDS Total dissolved solids (mg/l) 157.00 214.0 211.0 252.0 12.6 5.05 7 
Alk Total alkalinity (mg/li) 120.60 160.2 158.2 193.0 14.0 1.76 5 
EC Electrical conductivity (µ.mohs/cm) 260.00 333.5 330.0 393.0 18.5 4.59 11 
pH - 7.16 8.2 8.2 8.9 0.3 -0.02 5 
Tur Turbidity (NTU) 0.50 2.0 3.3 24.0 3.5 -0.20 8 
T Temperature (°C) 2.00 6.0 11.0 11.4 5.3 0.72 6 

* Feedback delays: The number of auto-regressive series lags as inputs of the NAR neural network; SD: Standard deviation; TH: Total 
hardness; TDS: Total dissolved solids; Alk: Alkalinity; EC: Electrical conductivity; Tur: Turbidity; T: Temperature 
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Figure 3. Neural network predicting structure with a hidden layer 
 

 

 
Figure 4. Hidden layer size versus network performance 

  



 

 
 

http://jaehr.muk.ac.ir 

  J Adv Environ Health Res, Vol. 1, No. 2, Autumn 2013       95 

Application of artificial neural network Solaimany-Aminabad et al. 

The MATLAB routine trainlm (training with 
Levenberg-Marquardt algorithem) was used for 
the optimization. This algorithm attains fast 
learning speed and high performance relative to 
other optimization algorithms and the details of 
this algorithm are reported by Hagan et al.15 The 
performance function used for training is based 
on the mean square errors (MSE) between actual 
WTP influent water characteristics and network 
predictions. Based on the selected network 
structure, the training process was activated to 
achieve a performance target of 1×10-3 for a 
maximum training of 1000 epochs. The learning 
rate was chosen to be 0.01. The value of this 
parameter was obtained after performing several 
trial and error runs. It was found that this value 
insures stable fast learning. 

In order to study the relative performance of 
the network, the correlation coefficient (R) and 
root of mean square error (RMSE) were worked 
out. The underlying expressions as well as the 
strengths and weaknesses of these parameters are 
given as below.11 

Correlation coefficient (R): 

∑

∑

=

=

−−

−−
=

n

i

n

i

YYXX

YYXX
R

1

22

1

)()(

))((
 

where X = observed yt , X  = mean of X ,  

Y = predicted yt, Y = mean of Y , and � = 
number of observations. 

The correlation coefficient (R) shows the extent 
of the linear association and similarity of trends 
between the target and the realized outcome. It is 
a number between 0 and 1; such that the higher 
the correlation coefficients the better the model 
fit. It, however, is heavily affected by the extreme 
values. 

Root of mean square error (RMSE): 

n

YX
RMSE

n

i∑ =
−

= 1

2)(
 

RMSD is a good measure of accuracy, but only 
to compare forecasting errors of different models 
for a particular variable and not between 
variables, as it is scale-dependent.21 

Results and Discussion 

The most common training algorithm used in 
the ANN literature is called back propagation 
(BP). Back propagation was developed and 
popularized by Rumelhart et al. and it is the 
most widely implemented of all neural network 
algorithms.22 It is based on a multi-layered feed 
forward topology with supervised learning. The 
network uses the default Levenberg–Marquardt 
algorithm for training. The input vectors and 
target vectors are randomly divided into three 
sets as follows: 70% are used for training, 10% 
are used to validate that the network is 
generalizing and to stop training before over-
fitting, the last 20% are used as a completely 
independent test of network generalization. The 
number of networks to fit with different random 
starting weights was 20 times. These are then 
averaged when producing predicts. 

Figure 4 shows the results of regression 
between network outputs and data sets of 
validation, and training and test targets. It is 
observed that the output tracks the targets well. 
Data from table 3 shows R and RMSE of each 
ANN for validation, training, and test steps. The 
correlation coefficient (R) measure the 
correlation between outputs and targets. An R 
value of 1 means a close relationship and 0 a 
random relationship while the RMSE is the root 
of mean squared difference between outputs 
and targets. The lower the values are the better.  

The coefficient R for the validation phase 
upon application of the test set, ranges from 0.61 
for Cl to 0.93 for Alk, and the coefficient of 
determination R2 ranges from 0.37 for Cl to 0.86 
for Alk. These figures indicate that 37% of the 
variation in the Cl variable can be explained by 
the variable time delays. The remaining 64% can 
be attributed to unknown, lurking variables, or 
inherent variability. Neural network model for 
Cl may, therefore, not able to solve this 
particular input-output mapping problem well. 

The results for Alk in table 3 are interesting as 
the R correlation coefficient is 0.93 (R2 = 0.86) for 
the validation phase. This indicates that this 
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Figure 4. Measured and predicted output variables 
TH: Total hardness; TDS: Total dissolved solids; Alk: Alkalinity; EC: Electrical conductivity 
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model has the best result throughout. However, 
all other results are also acceptable. The 
regression coefficient ranges from 0.74 for EC 
(R2 = 0.54) to 0.89 (R2 = 0.79) for pH. Thus, for 
these variables more than 50% of the variation in 
them can be explained by their time delays. 
Time series models for these variables, therefore, 
are able to solve the input-output mapping 
problem well. 

For all studied water influent characteristics, 
the simulation results of influent parameters are 
presented in figure 5 by plotting the measured 
and predicted output variables. The network 
response is satisfactory, and simulation can be 
used for entering new inputs. Given the above, it 
can be conclude that a feed-forward neural 
network based nonlinear autoregressive (NAR) 
model can be used for forecasting time series 
values well. The results of this study indicated 
high correlation coefficient between the 
measured and predicted output variables, 
reaching up to 0.93. Therefore, the prediction 
models developed in this work for Alk, pH, Ca, 
CO2, T, TH, Tur, TDS, and EC have an 
acceptable generalization capability and 
accuracy with coefficient of determination 
ranging from 0.86 for Alk to 0.54 for EC. As a 
result, the neural network modeling could 
effectively simulate and predict these influent 
water quality parameters of Sanandaj WTP. In 
the case of Cl, neural network modeling may not 
able to predict this influent water characteristic 
well, at least in this study. Thus, it is necessary 
to conduct more studies to make its behavior  

clear. The testing step of the models also 
provided similar results to validation step 
results. The correlation coefficient ranges from 
0.65 (R2 = 0.42) for Cl to 0.88 (R2 = 0.77) for TH 
and T. for Alkalinity, the test phase R is 0.85 
(R2 = 0.72). Thus, these results confirm the 
validation step. 

The application of predictive models for 
wastewater influent characteristics has been 
reported in several studies.23-25 Neural network 
modeling has rarely been used in water 
treatment plant influent forecasting. Zhang and 
Stanley, in their two studies, used ANN models 
to predict treated water turbidity and color at 
the Rossdale water treatment plant in 
Edmonton, Alberta, Canada.26,27 Lamrini et al. 
adapted the Levenberg–Marquardt method in 
ANN to predict the coagulant dosage for the 
raw water with high turbidity.28 

Conclusion 

This study presented a detailed methodology for 
developing successful ANN models for 
modeling influent water characteristics. The 
utility and applicability of this methodology is 
demonstrated through a case study in which 
some successful NAR models to predict influent 
water characteristics were developed. It is 
concluded that nonlinear autoregressive or NAR 
neural network provides an effective analyzing 
and diagnosing tool to understand and simulate 
the non-linear behavior of influent water 
characteristics of the water treatment plant. 
Moreover, it is a valuable predicting tool for  

 
Table 3. Performance of MLP networks 

Parameter Training phase Validation phase All phases Testing phase 
RMSE R RMSE R RMSE R RMSE R 

Cl 0.68 0.59 0.89 0.37 0.74 0.53 0.87 0.42 
EC 12.81 0.55 12.41 0.55 12.69 0.53 12.43 0.49 
TDS 6.70 0.72 6.96 0.61 7.20 0.67 9.34 0.55 
Tur 1.76 0.72 1.97 0.69 1.91 0.71 2.41 0.69 
TH 3.61 0.86 4.77 0.71 4.07 0.83 5.19 0.77 
T 1.20 0.86 2.19 0.71 1.53 0.83 2.01 0.77 
CO2 0.72 0.76 0.77 0.71 0.76 0.72 0.92 0.64 
Ca 2.27 0.71 2.03 0.72 2.18 0.71 1.87 0.74 
pH 0.14 0.76 0.14 0.79 0.14 0.74 0.17 0.62 
Alk  4.79 0.88 4.75 0.86 5.33 0.86 7.74 0.72 

RMSE: Root of mean square error; TH: Total hardness; TDS: Total dissolved solids; Alk: Alkalinity; 
EC: Electrical conductivity; Tur: Turbidity; T: Temperature 
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 (CO2) (Cl) 

 (TDS)  (TH) 

 (Ca)  (Alk) 

 (pH)  (EC) 
Figure 5. Networks responses and errors  
TH: Total hardness; TDS: Total dissolved solids; Alk: Alkalinity; EC: Electrical conductivity; Tur: Turbidity; 
T: Temperature 
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 (Tur) (T) 
Figure 5. Networks responses and errors (Continue) 
TH: Total hardness; TDS: Total dissolved solids; Alk: Alkalinity; EC: Electrical conductivity; Tur: Turbidity; T: 
Temperature 
 

plant operators and decision makers. The NAR 
models are robust artificial intelligence models 
that can be proposed as a useful tool to 
understand the complex and dynamic nature of 
influent water characteristic. 
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