New magnetic/Biosilica/Sodium Alginate Composites for removal of Pb (II) ions from aqueous solutions: Kinetic and isotherm studies

Document Type : Original Article

Authors

1 Research Center for Environmental Health Technology, Iran University of Medical Sciences, Iran

2 Department of Environmental Health Engineering, School of Health, Iran University of Medical Sciences, Tehran, Iran

Abstract

Lead is one of the heavy metals that have harmful effects on the human health and environment. In this study, a new magnetic/biosilica/sodium alginate adsorbent (MBSA) made by the coprecipitation method was used to remove lead from aqueous solutions. It was an experimental study conducted at laboratory scale. The properties of MBSA were analyzed by scanning electron microscope (SEM), XRD, and FTIR analyses. The influences of various parameters such as contact time (0–80 min), pH (3–11), initial lead concentration (10–80 mg/L), temperature (298–318 ºK), and adsorbent dosage (0.5–4 g/L) on the sorption process were investigated. The equilibrium isotherm and kinetic models were used to evaluate the fitness of the experimental data. The results showed that lead removal using MBSA was obtained at an optimum pH of 11, contact time of 80 minutes, adsorbent dosage of 4 g/L, lead concentration of 10 mg/L (46.29 g/g), and temperature of 318 ºK. Investigating the isotherm and kinetic equations showed that the experimental data of the lead adsorption process correlate with the Langmuir model (R2 = 973) and intraparticle diffusion kinetic model, respectively. The values of the thermodynamic parameters (ΔΗ°, ΔG°, ΔS°) indicated that the sorption of Pb (II) ions on MBSA was spontaneous and endothermic in nature. Due to the good removal efficiency, low cost of the process, and lack of production of harmful substances for the environment, this adsorbent can be used to remove lead from the industrial wastewater.

Keywords


1.         Pawar RR, Hong S-M, Jin KJ, Lee S-M. Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As (V) and Pb (II) from aqueous solutions. J Mol Liq 2017; 240: 497-503.
2.         Muhammad A.Albakri,  Mahmoud M.Abdelnaby, Tawfik A.Saleh, Othman Charles S.Al Hamouz. New series of benzene-1, 3, 5-triamine based cross-linked polyamines and polyamine/CNT composites for lead ion removal from aqueous solutions. Chem Eng J 2018; 333: 76-84.
3.         Tang J, He J, Xin X, Hu H, Liu T. Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chem Eng J 2018;334: 2579-92.
4.         Mahmoud M, Hassan S, Kamel A, Elserw M. Development of microwave-assisted functionalized nanosilicas for instantaneous removal of heavy metals. Powder Technol 2018;326: 13.
5.         Shi Z, Xu C, Guan H, Li L, Fan L, Wang Y, et al. Magnetic Metal Organic Frameworks (MOFs) Composite for Removal of Lead and Malachite Green in Wastewater. Colloids Surf A Physicochem Eng Asp 2018; 539:328-390.
6.         Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol Environ Saf 2018; 148: 702-12.
7.         Ghaemi N, Zereshki S, Heidari S. Removal of lead ions from water using PES-based nanocomposite membrane incorporated with polyaniline modified GO nanoparticles: Performance optimization by central composite design. Process Saf Environ Prot 2017;111: 475-90.
8.         Kakavandi B, Kalantary RR, Jafari AJ, Nasseri S, Ameri A, Esrafili A, et al. Pb (II) adsorption onto a magnetic composite of activated carbon and superparamagnetic Fe3O4 nanoparticles: experimental and modeling study. Clean: Soil, Air, Water 2015;43(8): 1157-66.
9.         Vilardi G, Di Palma L, Verdone N. Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models. Chin J Chem Eng 2017; 26(3):455-464.
10.       Verma R, Asthana A, Singh AK, Prasad S, Susan MABH. Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem J 2017; 130: 168-78.
11.       Lam B, Déon S, Morin-Crini N, Crini G, Fievet P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J Clean Prod 2018; 171: 927-33.
12.       Ayawanna J, Sato K. Photoelectrodeposition effect of lanthanum oxide-modified ceria particles on the removal of lead (II) ions from water. Catal Today 2017. (Article in Press)
13.       Pal P, Syed SS, Banat F. Gelatin-bentonite composite as reusable adsorbent for the removal of lead from aqueous solutions: Kinetic and equilibrium studies. J Water Process Eng 2017;20: 40-50.
14.       Mousa NE, Simonescu CM, Pătescu R-E, Onose C, Tardei C, Culiţă DC, et al. Pb2+ removal from aqueous synthetic solutions by calcium alginate and chitosan coated calcium alginate. React Funct Polym 2016; 109: 137-50.
15.       Yegane badi M, Azari A, Esrafili A, Ahmadi E, Gholami M. Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution. J Mazandaran Univ Med Sci 2015;25(124): 128-42.
16.       Abdellaoui Y, Olguín MT, Abatal M, Ali B, Méndez SED, Santiago AA. Comparison of the divalent heavy metals (Pb, Cu and Cd) adsorption behavior by montmorillonite-KSF and their calcium-and sodium-forms. Superlattices Microstruct 2017. (Article in Press)
17.       Yi X, He J, Guo Y, Han Z, Yang M, Jin J, et al. Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions. Ecotoxicol Environ Saf 2018; 147: 699-707.
18.       Liu J, Zhang Y, Chen D, Yang T, Chen Z, Pan S, et al. Facile synthesis of high-magnetization γ-Fe2 O3/alginate/silica microspheres for isolation of plasma DNA. Colloids Surf A Physicochem Eng Asp 2009; 341(1-3): 33-9.
19.       Hu Z-H, Omer AM, Ouyang Xk, Yu D. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb (II) from aqueous solution. Int J Biol Macromol  2018; 108: 149-57.
20.       Facchi DP, Cazetta AL, Canesin EA, Almeida VC, Bonafé EG, Kipper MJ, et al. New magnetic chitosan/alginate/Fe3O4@ SiO2 hydrogel composites applied for removal of Pb (II) ions from aqueous systems. Chem Eng J 2017; 337:595-608.
21.       Zhao X, Li J, Feng Y, Yu G, Zhou Q, He F, et al. Self-aggregation behavior of hydrophobic sodium alginate derivatives in aqueous solution and their application in the nanoencapsulation of acetamiprid. Int J Biol Macromol 2018; 106: 418-24.
22.       Al-Ghouti M, Khraisheh M, Ahmad M, Allen S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J Colloid Interface Sci 2005;287(1): 6-13.
23.       Yuan P, Liu D, Fan M, Yang D, Zhu R, Ge F, et al. Removal of hexavalent chromium [Cr (VI)] from aqueous solutions by the diatomite-supported/unsupported magnetic nanoparticles. J Hazard Mater 2010; 173(1-3): 614-21.
24.       Karaman S, Karaipekli A, Sarı A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 2011;95(7): 1647-53.
25.       Farooghi A, Sayadi MH, Rezaei MR, Allahresani A. An efficient removal of lead from aqueous solutions using FeNi3@ SiO2 magnetic nanocomposite. Surfaces and Interfaces 2018;10: 58-64.
26.       Sun Z, Yao G, Liu M, Zheng S. In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes. J Taiwan Inst Chem Eng 2017;71: 501-9.
27.       Vojoudi H, Badiei A, Bahar S, Ziarani GM, Faridbod F, Ganjali MR. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. J Magn Magn Mater 2017; 441:193-203.
28.       Lou Z, Zhou Z, Zhang W, Zhang X, Hu X, Liu P, et al. Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: synthesis, characterization, mechanism, kinetics and regeneration. J Taiwan Inst Chem Eng 2015; 49: 199-205.
29.       Soltani RDC, Khataee A, Safari M, Joo S. Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int Biodeterior Biodegradation 2013;85: 383-91.
30.       Hossaini H, Moussavi G, Farrokhi M. The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Res 2014;59: 130-44.
31.       Khaniabadi YO, Heydari R, Nourmoradi H, Basiri H, Basiri H. Low-cost sorbent for the removal of aniline and methyl orange from liquid-phase: Aloe Vera leaves wastes. J Taiwan Inst Chem Eng 2016;68: 90-8.
32.       Yahong Z, Zhenhua X, Ximing W, Li W, Aiqin W. Adsorption of congo red onto lignocellulose/montmorillonite nanocomposite. J Wuhan Univ Technol Mater Sci Ed 2012;27: 931-8.
33.       Shi W, Guo F, Wang H, Liu C, Fu Y, Yuan S, et al. Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution. App Surf Sci 2018; 433: 790-7.
34.       Mouni L, Belkhiri L, Bollinger J-C, Bouzaza A, Assadi A, Tirri A, et al. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl Clay Sci 2018;153: 38-45.
35.       Yang Q, Wang Y, Wang J, Liu F, Hu N, Pei H, et al. High Effective Adsorption/Removal of Illegal Food Dyes from Contaminated Aqueous Solution by Zr-MOFs (UiO-67). Food Chem 2018;254:241-248.
36.       Zakaria ND, Yusof NA, Haron J, Abdullah AH. Synthesis and evaluation of a molecularly imprinted polymer for 2, 4-dinitrophenol. Int J Mol Sci 2009; 10(1): 354-65.
37.       Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, et al. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem Eng J 2015; 260: 291-9.
38.       Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 2012;368(1): 540-6.
39.       Soltanian M, Pirsaheb M, Almasi A, Masoud M, SHarafi K, Soltanian S. Kinetic and isotherm study of methylene blue dye adsorption by powdered natural pumice from the aquatic environment. The Journal of Toloo-e-behdasht 2015;14(5): 50-63.
40.       Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 2011;186(1): 458-65.
41.       Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng  J 2010; 156(1): 2-10.
42.       Nourmoradi H, Zabihollahi S, Pourzamani H. Removal of a common textile dye, navy blue (NB), from aqueous solutions by combined process of coagulation–flocculation followed by adsorption. Desalination Water Treat  2016; 57(11): 5200-11.
43.       Ofomaja AE. Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust. Bioresour Technol 2010;101(15): 5868-76.
44.       Zawani Z, Chuah AL, Choong T. Equilibrium, kinetics and thermodynamic studies: adsorption of Remazol Black 5 on the palm kernel shell activated carbon. European Journal of Scientific Research 2009;37: 67-76.
45.       Sundarrajan P, Eswaran P, Marimuthu A, Subhadra LB, Kannaiyan P. One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bull Korean Chem Soc 2012;45(43): 3218-24.
46.       Pezeshkpour S, Salamatinia B, Horri BA. Synthesis and characterization of nanocrystalline NiO-GDC via sodium alginate-mediated ionic sol-gel method. Ceram Int 2018;44(3): 3201-10.
47.       Aprilliza M. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. IOP Conference Series: Materials Science and Engineering; 2017: IOP Publishing.
48.       Kulig D, Zimoch-Korzycka A, Jarmoluk A, Marycz K. Study on alginate–chitosan complex formed with different polymers ratio. Polymers 2016;8(5): 167.
49.       Stuart B. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons; 2004. 208 p.
50.       Badii K, Ardejani FD, Saberi MA, Limaee NY. Adsorption of Acid blue 25 dye on diatomite in aqueous solutions. Ind J Chem tecnol 2010; 17:7-16.
51.       Wang L, Zhang J, Wang A. Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 2008; 322(1-3): 47-53.
52.       Wang Y, Feng Y, Zhang X-F, Zhang X, Jiang J, Yao J. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals. J Colloid Interface Sci 2018;514: 190-8.
53.       Culita DC, Simonescu CM, Patescu R-E, Dragne M, Stanica N, Oprea O. o-Vanillin functionalized mesoporous silica – coated magnetite nanoparticles for efficient removal of Pb(II) from water. J Solid State Chem 2016;238: 311-20.
54.       Saha S, Basu H, Singhal RK, Pimple MV. Titania coated silica microsphere functionalized with potassium ferrocyanide impregnated in calcium alginate for efficient removal of Cs from aquatic environment. J Environ Chem Eng 2017;5: 5187-95.
55.       Huang Y, Wang Z. Preparation of composite aerogels based on sodium alginate, and its application in removal of Pb2+ and Cu2+ from water. Int J Biol Macromol 2018;107: 741-7.
56.       Yari M, Norouzi M, Mahvi AH, Rajabi M, Yari A, Moradi O, et al. Removal of Pb (II) ion from aqueous solution by graphene oxide and functionalized graphene oxide-thiol: effect of cysteamine concentration on the bonding constant. Desalination Water Treat 2016;57: 11195-210.
57.       Badi MY, Azari A, Pasalari H, Esrafili A, Farzadkia M. Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J Mol Liq 2018; 261:146-154.
58.       Wu J, Wang X-B, Zeng RJ. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example. J Hazardous Mater 2017;333: 275-84.
59.       Hashemi F, Godini H, Shams Khorramabadi G, Mansouri L. Assessing Performance of Walnut Green Hull Adsorbent in Removal of Phenol from Aqueous Solutions. Iran J Health Environ 2014; 7 (2) :265-276
60.       Onyango MS, Masukume M, Ochieng A, Otieno F. Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate. Water SA 2010;36(5): 655-62.
61.       Shi L-n, Zhang X, Chen Z-l. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 2011;45(2): 886-92.
62.       Acharya J, Sahu J, Mohanty C, Meikap B. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem Eng J 2009;149(1-3) 249-62.
63.       Allen S, Mckay G, Porter JF. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci 2004;280(2): 322-33.
64.       Dada A, Olalekan A, Olatunya A, Dada O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J App Chem 2012;3(1): 38-45.
65.       Zanin E, Scapinello J, de Oliveira M, Rambo CL, Franscescon F, Freitas L, et al. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf Environ Prot 2017;105: 194-200.
66.       Nourmoradi H, Avazpour M, Ghasemian N, Heidari M, Moradnejadi K, Khodarahmi F, et al. Surfactant modified montmorillonite as a low cost adsorbent for 4-chlorophenol: Equilibrium, kinetic and thermodynamic study. J Taiwan Inst Chem Eng 2016;59: 244-51.
67.       Shaker MA, Yakout AA. Optimization, isotherm, kinetic and thermodynamic studies of Pb (II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 2016;154: 145-56.