Adsorption and desorption of lead in Iranian acid and alkaline soils amended with sewage sludge-derived biochar

Document Type: Original Article


1 Ph.D Student, Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan ,Iran

2 Associate Professor, Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran


The effective management of sewage sludge materials in an environmentally and economically acceptable way is through the pyrolytic conversion of the sludge to biochar and its use for agricultural purposes. The aims of this work were: (1) to assess the effect of biochar prepared from sewage sludge at two different temperatures (350 ºC and 650 ºC) on the adsorption/desorption capacity of Pb (II) in two different Iranian soils (acidic and alkaline soils), and (2) to investigate the adsorption/desorption isotherm. The results indicated that with increasing pyrolysis temperature, the soil pH, ash content, aromaticity, BET, and total heavy metal concentration increased. On the other hand, the pyrolysis yield, percentages of H, N and O, atomic ratios, CEC and polarity of biochar decreased. The adsorption and desorption of Pb was more accurately described by the Langmuir isotherm than the Freundlich isotherm The maximum adsorption capacity of biochars increased for alkaline and acidic soils when pyrolysis temperatures increased, suggesting that high temperature pyrolysis led to the biochars having high Pb adsorption capacity. The desorption of pre-adsorbed Pb (II) by NaNO3 decreased in soils incorporated with biochars.


1. Fahiminia M, Farzadkia M, Jafari Mansoorian H, Majidi G, Mirzabeygi Arhany M, et al.. The status of wastewater management in Shokuhieh industrial park (A case study of Qom province). Environ. Health Eng Manage J. 2015; 2(4): 165-171.

2. Cheng S, Jang JH, Dempsey BA, Logan BE. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Res 2011:45(1); 303-307.

3. Dawson J. Barrier containment technologies for environmental remediation applications. Journal of Hazardous Materials. 1996;51(1-3):256.

4. Gray CW, Dunham SJ,, Dennis P G, Zhao FJ,  McGrath SP. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 2006; 142(3):530-539.

5. Liu L, Chen H, Cai P, Liang W, Huang  Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater 2009; 163(2): 563-567.

6. Querol  X, Alastuey A, Moreno N, Alvarez-Ayuso E, Garcı́a-Sánchez A, Cama J,  Simón M. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere 2006; 62(2): 171-180.

7. Acar YB, and Alshawabkeh, AN. Principles of electrokinetic remediation. Environ. Sci. Technol 1993; 27(13): 2638-2647.

8. Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an Evalation.Engin Geo. 2001; 60(1): 193-207.

9. Lovley, D. R., Coates, J. D. Bioremediation of metal contamination. Curr. Opin. Biotechnol 1997; 8(3): 285-289.

10. Gavrilescu, M. Removal of heavy metals from the environment by biosorption.  Eng Life Sci .2004; 4(3): 219-232.

11. Zhou DM, Hao XZ, Wang YJ, Dong YH, Cang L. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere. 2005;59(2): 167-175.

12. Domínguez A, Menéndez J A, Inguanzo M, Pis J J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresurse Technol. 2006; 97(10): 1185-1193.

13. Smith KM, Fowler GD, Pullket S, Graham ND. Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res. 2009; 43(10):2569-2594.

 14. Hossain MK, Strezov V, Chan KY, Nelson PF. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere. 2010; 78(9): 1167-1171.

15. Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage. 2011; 92(1): 223-228.

 16. Dong X, Ma LQ, Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 2011; 190(1): 909-915.

17. Sohi SP, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Adv Agron. 2010; 105: 47-82.

18. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy  fuels,  2006; 20(3): 848-889.

19. Chen JP, Lin M. Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Rese. 2001; 35(10):2385-2394.

20. Cao X, Ma L, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009;  43(9): 3285-3291.

21. Ma L, Xu R, Jiang J. Adsorption and desorption of Cu (II) and Pb (II) in paddy soils cultivated for various years in the subtropical China. J. Environ. Sci. 2010; 22(5): 689-695.

22. Tong XJ, Li  JY,  Yuan JH, Xu RK. Adsorption of Cu (II) by biochars generated from three crop straws. Chem. Eng. J. 2011; 172(2): 828-834.

23. Tong  X,  Xu  R. Removal of Cu (II) from acidic electroplating effluent by biochars generated from crop straws. J. Environ. Sci, 2013;25(4): 652-658.

24. Park J, Choppala G, Bolan N, Chung J, Chuasavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil. 2011;348(1-2):439-451.

25. Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012; 110: 50-56.

26. Suppadit T, Kitikoon V, Phubphol A, Neumnoi P. Effect of quail litter biochar on productivity of four new physic nut varieties planted in cadmium-contaminated soil. Chil J Agr Res. 2012; 72(1): 125-132.

27. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research. 2012;46(3):854-862.

 28. Peng X, Ye LL, Wang CH, Zhou H, and Sun B. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res.  2011; 112(2): 159-166.

29. Uchimiya M, Klasson KT, Wartelle LH, Lima IM. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 2011; 82(10): 1431-1437.

30. Uchimiya M, Klasson KT, Wartelle LH, Lima IM. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Chemosphere, 2011; 82(10): 1438-1447.

31. Thomas GW, Sparks DL, Page  AL, Helmke PA, Loeppert RH, Soltanpour, et al. Soil pH and soil acidity. Methods of soil analysis. Part 3-chemical methods. 1996:  475-490.

 32. Sumner M, Miller WP, Sparks DL, Page AL, Helmke PA, et al. Cation exchange capacity and exchange coefficients. Methods of soil analysis. Part 3-chemical methods. 1996 : 1201-1229.

33. Nelson DW, Sommers L. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 1982: 539-579.

34. Bouyoucos GJ. Hydrometer method improved for making particle size analyses of soils. Agron. J 1962; 54(5): 464-465.

35. Lu H, Zhang W, Wang S, Zhuang L, Yang Y, Qiu R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrol 2013;102 :137-143.

36. Méndez A, Terradillos M, Gascó G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrol 2013; 102: 124-130.

 37. Mukome FN, Zhang X, Silva LC, Six J, Parikh SJ. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem, 2013; 61(9): 2196-2204

38. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM, USA.2005.

39. EPA Method 3051 A, Microwave Assisted Acid Digestion of Sediments, Sludges and Oils US EPA Office of Solid Waste, Washington DC. 2007.

40. Rajabi B, Khodaverdilo H, Samadi A, and Rasouli SM. Sorption and Desorption of Lead in some calcareous soils of western Azerbaijan province. J Water Soil. 2012; 25(6) : 1287-1298.(In Persian)

41. Khodaverdiloo H, and HamzenejadTaghlidabad R. Sorption and Desorption of Lead (Pb) and Effect of Cyclic Wetting-Drying on Metal Distribution in Two Soils with Different Properties. Water Soil Sci.2011; 21(1): 149-163. (In Persian)

42. Jiang TY, Jiang J, Xu RK, and Li Z. Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar.Chemosphere,  2012; 89(3): 249-256.

43. Yuan J, Xu R. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management. 2010; 27(1):110-115.

 44. Zielińska A, Oleszczuk P, Charmas B, Skubiszewska-Zięba  J, Pasieczna-Patkowska S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrol 2015; 112: 201-213

45. Oh TK, Choi B, Shinogi Y, Chikushi J. Characterization of biochar derived from three types of biomass. J Faculty Agric, Kyushu University. 2012; 57(1): 61-66.

46. Chen T, Zhang Y, Wang H, Lu W, Zhou Z, Zhang Y et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol.  2014; 164:47-54.

(47). Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman AR. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpuswastes. Bioresour. Technol. 2013;  131: 374-379.

48. US EPA, Standards for the use or disposal of sewage sludge, Federal Register 58 .1993. 9248–9415.

49. Giles CH, Smith D, and Huitson A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci.,  1974; 47(3): 755-765.

50. Hawari  AH, and Mulligan CN. Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bioresour. Technol, 2006; 97(4): 692-700.

51. Yuan JH, Xu RK, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol, 2011; 102(3): 3488-3497.

52. Kołodyńska D, Wnętrzak R, Leahy JJ, Hayes  MHB., Kwapiński W, Hubicki Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012; 197: 295-305.

53. Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman A, Cao X. Enhanced Lead Sorption by Biochar Derived from Anaerobically Digested Sugarcane Bagasse. Separation Science and Technology. 2011; 46(12):1950-1956.