Prevalence of antibiotic resistant genes in selected activated sludge processes in Isfahan Province, Iran

Rahim Aali

1 Department of Environmental Health Engineering, School of Nursing and Health, Urmia University of Medical Sciences, Urmia, Iran

Abstract

Wastewater treatment plants are one of the main sources of dissemination of antibiotic resistance genes (ARGs) into the environment. The present study was conducted to determine the prevalence and removal of ARGs in different wastewater treatment processes. A total of 36 samples from raw and final effluent of different activated sludge processes were collected and analyzed. Molecular analysis was conducted on the samples for the detection of encoding genes resistant to three groups of antibiotics (tetracycline, erythromycin, and sulfonamide). The results of this study showed that all ARGs were identified in activated sludge processes (average 70%). Comparison of different activated sludge processes showed that the removal percentage patterns were A-B process, conventional process, and extended aeration process, respectively. The results of this study showed that ARGs were present in relatively high levels in activated sludge process. The results also indicated that the activated sludge process did not contribute to effective reduction of ARGs. However, this revealed the major role of the activated sludge process in the distribution of ARGs in the environment. Thus, it seems that the improvement of the process is necessary for ARGs control in activated sludge process.

KEYWORDS: Activated sludge, Antibiotic resistance genes (ARGs), wastewater, A-B process, Extended aeration

Introduction

Antibiotics are widely used for human health, and veterinary and agriculture purposes. Most antibiotics are released unchanged into the environment. Antibiotics can be poorly absorbed and metabolized by humans and animals. The metabolized rate of antibiotics is estimated to be approximately 3%. During recent years, the negative effects of antibiotic residues in the environment have gained more attention. It is very important to note that the widespread use of antibiotics is the major reason for the emergence, selection, and spreading of antibiotic-resistant bacteria. Researches demonstrated the dissemination of resistance genes rapidly transmitted between microorganisms in the environment. Resistance to antibiotics can cause many problems such as increased rate of mortality and treatment length. Application of antibiotics in humans, veterinary medicine, and agriculture for nearly 60 years has exerted a major impact on bacterial communities, resulting in various resistances to the antibiotics, which is genetically controlled by antibiotic resistance genes (ARGs). Genetic elements such as integrons, plasmids, and transposons have the main role in the transitions of ARGs between bacteria in the environment. Previous studies found resistance genes in different environments (water, wastewater, and soil). ARGs and antibiotic resistant bacteria have been detected extensively in wastewater samples.

Corresponding Author:
Rahim Aali
Email: aali@hith.mui.ac.ir

Date of submission: 22 Sep 2015, Date of acceptance: 19 Dec 2015

However, infectious diseases by antibiotic resistant bacteria have been a serious concern in hospitals and clinics13 due to overprescribing of antibiotics to patients.

Wastewater treatment plants (WWTPs) are connected to public and private households, hospitals, and other non-point sources such as industries where antibiotics are used.14 Different investigations have detected resistant bacteria and genes in wastewaters.11,12,15 However, studies have shown that the elimination of antibiotics and resistant determinants in WWTPs is incomplete and the residues may enter the environment via wastewater discharge and land application of biosolids.2,12,16,17 Although some researchers indicated an ambiguous role for wastewater treatment in the reduction of ARGs, some reports suggested that certain factors in WWTPs may increase the prevalence of ARGs,12,14,18

The aim of this study was to investigate the prevalence of ARGs, effects of different wastewater treatments on the prevalence of ARGs, comparison of ARGs in the influent and effluent of different activated sludge processes, and the possibility of the dispersion of ARGs into the environment. In this study, raw influents and final effluents were collected for different goals.12

Materials and Methods

Samples were collected from the inlet and outlet of three different activated sludge processes located in Isfahan Province, Iran, including two-stage activated sludge treatment system (A-B process) (geospatial location: N 32°44' 55.00", E 51°44' 2.12"), conventional activated sludge treatment system (N 32°37' 06.79", E 51°43' 39.32") and extended aeration treatment system (N 31°59' 49.22", E 51°50' 29.68"). A total of 36 samples were collected from raw wastewater and final effluents in 1-liter sterile glasses. Samples were transferred to the laboratory and analyzed immediately after arrival.

DNA was also extracted from the original wastewater samples to determine the presence/absence of the selected genes in raw wastewater and effluent samples. For this purpose, 50 ml of each sample was centrifuged at 6000 rpm for 15 minutes. The supernatant was discarded, and the pellet was resuspended in 300 μl of distilled water. The resuspended pellets were frozen in liquid nitrogen and heated in boiling water three times.19 DNA was extracted and purified using Promega DNA Extraction kit (Promega Wizard Genomic DNA Purification Kit, Madison, WI, USA) according to the manufacturer’s manual. The 3 resistance encoding genes of tetW, sul1, and ermB were selected. Three primers pairs were used for the amplification of these genes. The characteristics of the primers are given in table 1.

Polymerase chain reaction (PCR) amplification was conducted in a total volume of 25 μl containing 2.5 μl of 10 X PCR buffer, 0.2 μM of each primer, 0.2 mM of each dNTP, 2 units of Taq DNA polymerase, and 1 μl of DNA. All assays contained a positive and a negative control. The PCR process is performed using an initial denaturation at

Table 1. Characteristics of primers used in the study

<table>
<thead>
<tr>
<th>Adsorbate</th>
<th>Target gene</th>
<th>Sequence (5’- 3’)</th>
<th>Amplified size (bp)</th>
<th>Annealing temperature (˚C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TetW-FV</td>
<td>TetW</td>
<td>GAGAGCGCTGCTATATGCCAGC GGCATTATCCACAATGTAAAC</td>
<td>164</td>
<td>64</td>
<td>12, 27</td>
</tr>
<tr>
<td>TetW-RV</td>
<td>Sul1</td>
<td>CGCACCAGGAAACATCGTCGAC TGAAGTTCCGCCGCAAGGCTCG</td>
<td>168</td>
<td>65</td>
<td>12, 28</td>
</tr>
<tr>
<td>Sul1-FW</td>
<td>ermB</td>
<td>AAAACCTAACCGGCCATACCA TTTGGCGTGTTCATTGCTT</td>
<td>193</td>
<td>60</td>
<td>14, 29, 30</td>
</tr>
<tr>
<td>Sul1-RW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErmB-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErmB-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
94°C for 10 minutes, denaturation at 94°C for 45 seconds, annealing at varied temperatures for 30 seconds, and extension at 72°C for 45 seconds for 30 cycles, followed by a final extension at 72°C for 10 minutes. PCR products were analyzed through agarose gel electrophoresis using 1.5% gels containing ethidium bromide together with a DNA molecular weight marker. Gels were viewed on a UV transilluminator (UV Tech, France).

To compare the presence and absence of genes in different sites and before and after treatment, Excel and SPSS software (version 20, SPSS Inc., Chicago, IL, USA) were used.

Results and Discussion

ARGs are a global concern. Environmental compartment is one of the main routes for prevalence and dissemination of these pollutants. WWTPs can enhance or reduce ARGs in the environment. This study documents the prevalence of ARGs at different WWTPs in Isfahan. All genes were detected in WWTPs (Figure 1).

The overall prevalence of ARGs in different WWTPs are presented in figure 2. This shows that the abundance of ARGs in A-B process was higher than other WWTPs and the abundance of ARGs was lowest in extended aeration process. However, the pattern of ARGs in different WWTPs is A-B process > conventional process > extended aeration process. Although, A-B process has a double process for the treatment of wastewaters, the results show that the efficiency of this process is very low. Previous studies have reported that the low performance of the A-B process in WWTPs is related to types of operation and raw wastewater inlet. Munir et al. showed that these genes are found in abundance in WWTPs (activated sludge, membrane bio reactor (MBR), rotating biological contactors (RBCs), and oxidation ditch). Their findings confirm the results of the present study. However, other researchers showed that these genes can be transferred by different bacteria (Aeromonas, escherichia, listeria, and etc., microbial community, bacillus, and enterococcus).

As shown in figure 3, the frequencies of ARGs in influent and effluent are sul1 > ermB > tetW and sul1 > tetW > ermB, respectively. Munir et al. found that the sul1 gene had the highest prevalence (100%) in the WWTPs.

![Polymerase chain reaction (PCR) product profiles of TetW (a), Sul1 (b), and ErmB (c)](http://jaehr.muk.ac.ir)

Figure 1. Polymerase chain reaction (PCR) product profiles of TetW (a), Sul1 (b), and ErmB (c)

![Overall antibiotic resistance genes (ARGs) detected in different wastewater treatment plants (WWTPs)](http://jaehr.muk.ac.ir)

Figure 2. Overall antibiotic resistance genes (ARGs) detected in different wastewater treatment plants (WWTPs)
The high prevalence of this gene can be due to a high prevalence of the genetic elements (integron) in the activated sludge process. However, there was a variation in the prevalence of different ARGs. This variation was also observed in other studies. The variation in the prevalence of ARGs in wastewater treatment may be due to the nature of wastewater, type of bacteria that carry ARGs, and environmental factors (such as temperature, pH, oxygen, and etc.). As seen in figure 4, ARG reduction for Sul1, tetW, and ermB was 29, 49, and 54 percent, respectively.

Figure 3. Percentage of antibiotic resistance genes (ARGs) in inlet and outlet of different activated sludge processes

The percentage of reduction shows that the impacts of the process on ermB is the highest and on Sul1 is the lowest. Rodriguez-Mozaz et al. and Samadi et al. reported that the effects of WWT on the reduction of ARGs were not uniform. These findings were in agreement with those of the present study. For example, ermB and tetW decreased during wastewater treatment, but increased in the case of blaTEM, sul1, and qnrS. Furthermore, Szczepanowski et al. detected 64% resistance genes in the final effluent of WWTPs. Aydin et al. showed that these genes are found in abundance in anaerobic treatment facilities.

Conclusion

The present research findings indicate that activated sludge process is a hotspot for the release of ARGs into the environment. Dissemination of ARGs into the environment is a growing public health concern. ARGs in the environment can be transferred from pathogenic bacteria to non-pathogenic bacteria. However, this impairs water ecology through the change in population dynamics and physiology and also poses a hazard to public health.

Conflict of Interests

Authors have no conflict of interests.

Acknowledgements

The author would like to express his appreciation for the financial support and assistance of the Research Deputy of Isfahan University of Medical Sciences.

References

5. Tao R, Ying GG, Su HC, Zhou HW, Sidhu JP. Detection of antibiotic resistance and tetracycline