Correlation of air pollutants with land use and traffic measures in Tehran, Iran: A preliminary statistical analysis for land use regression modeling

Document Type: Original Article

Authors

1 Kurdistan Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj AND Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

2 Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom AND Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran

3 Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Land use regression (LUR) models have been globally used to estimate long-term air pollution exposures. The present study aimed to analyze the association of different land use types and traffic measures with air pollutants in Tehran, Iran, as part of the future development of LUR models. Data of the particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) were extracted from 23 Tehran’s air quality monitors for 2010. The data of different land use types and traffic measures within the circular buffer radii 100 to 1000 meters and distances to them were calculated using Geographic Information System (GIS). Thereafter, the association of the mentioned air pollutants was evaluated with land use types and traffic measures. The annual average concentrations of PM10, SO2 and NO2 were 100.8 µg/m3, 38 parts per billion (ppb), and 53.2 ppb, respectively. The PM10 was associated with transportation area, other areas, and with distance to the other nearest land use (P < 0.05). The SO2 concentration was associated with official or commercial land use, and with other area land use (P < 0.05). Noteworthy, the NO2 concentration was associated with official or commercial land use, and with other areas (P < 0.05). The air pollutant concentrations was analyzed with different land use types and traffic measures as a preliminary work for development of LUR models in Tehran. It is hoped these analyses lead to successful development of LUR models in the near future.  

Keywords


1. Brunekreef B, Holgate ST. Air pollution and health. Lancet 2002; 360(9341): 1233-42.

2. Yunesian M, Asghari F, Vash JH, Forouzanfar MH, Farhud D. Acute symptoms related to air pollution inurban areas: a study protocol. BMC Public Health 2006; 6: 218.

3. Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, et al. Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect 2010; 118(2): 284-90.

4. Hosseinpoor AR, Forouzanfar MH, Yunesian M, Asghari F, Naieni KH, Farhood D. Air pollution and hospitalization due to angina pectoris in Tehran, Iran: a time-series study. Environ Res 2005; 99(1): 126-31.

5. Malmqvist E, Rignell-Hydbom A, Tinnerberg H, Bjork J, Stroh E, Jakobsson K, et al. Maternal exposure to air pollution and birth outcomes. Environ Health Perspect 2011; 119(4): 553-8.

6. Amigou A, Sermage-Faure C, Orsi L, Leverger G, Baruchel A, Bertrand Y, et al. Road traffic and childhood leukemia: the ESCALE study (SFCE). Environ Health Perspect 2011; 119(4): 566-72.

7. Hoek G, Fischer P, Van Den Brandt P, Goldbohm S, Brunekreef B. Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality. J Expo Anal Environ Epidemiol 2001; 11(6): 459- 69.

8. Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 2002; 360(9341): 1203-9.

9. Marshall JD, Brauer M, Frank LD. Healthy neighborhoods: walk ability and air pollution. Environ Health Perspect 2009; 117(11): 1752-9.

10. Molter A, Lindley S, de Vocht F, Simpson A, Agius R. Modeling air pollution for epidemiologic research--Part I: A novel approach combining land use regression and air dispersion. Sci Total Environ 2010; 408(23): 5862-9.

11. Marshall JD, Nethery E, Brauer M. Within-urban variability in ambient air pollution: Comparison of estimation methods. Atmospheric Environment 2008;42(6): 1359-69. 

12.       Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment 2008; 42(33): 7561-78.

13.       Brook RD, Shin HH, Bard RL, Burnett RT, Vette A, Croghan C, et al. Exploration of the rapid effects of personal fine particulate matter exposure on arterial hemodynamics and vascular function during the same day. Environ Health Perspect 2011; 119(5): 688-94.

14.       Liao D, Peuquet DJ, Duan Y, Whitsel EA, Dou J, Smith RL, et al. GIS approaches for the estimation of residential-level ambient PM concentrations. Environ Health Perspect 2006; 114(9): 1374-80.

15.       Naghizadeh A, Mahvi AH, Jabbari H, Derakhshani E, Amini H. Exposure assessment to dust and free silica for workers of Sangan iron ore mine in Khaf, Iran. Bull Environ Contam Toxicol 2011; 87(5): 531-8.

16.       Beelen R, Voogt M, Duyzer J, Zandveld P, Hoek G. Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area. Atmospheric Environment 2010; 44(36): 4614-21.

17.       Kingham S, Briggs D, Elliott P, Fischer P, Erik L. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmospheric Environment 2000; 34(6): 905-16.

18.       Lebret E, Briggs D, van Reeuwijk H, Fischer P, Smallbone K, Harssema H, et al. Small area variations in ambient NO2 concentrations in four European areas. Atmospheric Environment 2000; 34(2): 177-85.

19.       Kashima S, Yorifuji T, Tsuda T, Doi H. Application of land use regression to regulatory air quality data in Japan. Sci Total Environ 2009; 407(8): 3055-62.

20.       Vienneau D, de Hoogh K, Beelen R, Fischer P, Hoek G, Briggs D. Comparison of land-use regression models between Great Britain and the Netherlands. Atmospheric Environment 2010; 44(5): 688-96.

21.       Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, et al. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 2005; 15(2): 185-204.

22.       Dijkema MB, Gehring U, van Strien RT, van der Zee SC, Fischer P, Hoek G, et al. A comparison of different approaches to estimate small-scale spatial variation in outdoor NO(2) concentrations. Environ Health Perspect 2011; 119(5): 670-5.

23.       Su JG, Jerrett M, Beckerman B, Wilhelm M, Ghosh JK, Ritz B. Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy. Environ Res 2009; 109(6): 657-70. 24.            Clougherty JE, Wright RJ, Baxter LK, Levy JI. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants. Environ Health 2008; 7: 17.

25.       Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, et al. Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science 1997; 11(7): 699-718.

26.       Ryan PH, Lemasters GK, Levin L, Burkle J, Biswas P, Hu S, et al. A land-use regression model for estimating microenvironmental diesel exposure given multiple addresses from birth through childhood. Sci Total Environ 2008; 404(1): 139-47.

27.       Ross Z, Jerrett M, Ito K, Tempalski B, Thurston GD. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment 2007; 41(11): 2255-69.

28.       Novotny EV, Bechle MJ, Millet DB, Marshall JD. National satellite-based land-use regression: NO2 in the United States. Environ Sci Technol 2011; 45(10): 4407-14.

29.       Chen L, Baili Z, Kong S, Han B, You Y, Ding X, et al. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J Environ Sci (China) 2010; 22(9): 1364-73.

30.       Statistical Centre of Iran. Estimated Population of Country Cities for 2010 [Online]. 2012 [cited 2012 Aug 1]; Available from URL:http://www.amar.org.ir/Default.aspx?tabid=339&agent Type=View&PropertyID=1130 [In Persian].

31.       R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2009.

32.       Honaker J, King G, Blackwell M. Amelia II: A Program for Missing Data. Journal of Statistical Software 2011; 45(7): 1-47.

33.       JICA and CEST. The study on seismic micro-zoning of the greater Tehran area in the Islamic Republic of Iran [Online]. 2001; Available from: URL: http://www.vojoudi.com/earthquake/jica [In Persian].

34.       Henderson SB, Beckerman B, Jerrett M, Brauer M. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ Sci Technol 2007; 41(7): 2422-8.

35.       Sangrador JL, Nuñez MC, Villarreal A B, Cadena LH, Jerrett M, Romieu I. A Land Use Regression Model for Predicting PM2.5 in Mexico City. Epidemiology 2008; 19(6): 259.

36.       Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M, et al. Creating national air pollution models for population exposure assessment in Canada. Environ Health Perspect 2011; 119(8): 1123-9.