Photocatalytic Degradation of Cefixime Antibiotic by Polyaniline/SnO2 Nanocomposite and Optimization of the Process Using Response Surface Methodology

Document Type : Original Article

Authors

Department of Chemistry, Tabriz branch, Islamic Azad University, Tabriz 5157944533, Iran

10.34172/jaehr.2023.12

Abstract

Background: Aniline-based organic nanocomposites have a significant performance as photocatalysts in the advanced oxidation process (AOP).
Methods: In this study, polyaniline-tin dioxide (PA/SnO2) nanocomposite was prepared using an ultrasonic process. Next, its efficiency as a photocatalyst in the removal of Cefixime antibiotic pollutant from contaminated waters in a tubular photo reactor was investigated. The experiments were designed by the response surface methodology (RSM) via Minitab software, in such a way that the effects of various parameters on the process are investigated. The effect of different parameters such as reaction time, solution pH, flow rate, antibiotic concentration and hydrogen peroxide concentration on the removal efficiency was investigated.
Results: According to the results, the following optimal conditions were obtained: time of 120 min, pH of 8.69, hydrogen peroxide concentration of 4.22 mM, flow rate of 1.25 L/min and initial antibiotic concentration of 22.92 mg/L. Under the above-mentioned optimal conditions, the efficiency of Cefixime removal was more than 72.24%.
Conclusion: The present study confirms the usability of the PA/SnO2 nanocomposite as a novel and effective photocatalyst for photocatalytic degradation of Cefixime antibiotic in contaminated water under UV light.

Keywords

Main Subjects


  1. de Carvalho Costa LR, de Moraes Ribeiro L, Hidalgo GE, Féris LA. Determination of optimal operating parameters for tetracycline removal by adsorption from synthetic and real aqueous solutions. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020;55(14):1615-23. doi: 1080/10934529.2020.1829887.
  2. Bayan EM, Pustovaya LE, Volkova MG. Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems. Environ Technol Innov. 2021;24:101822. doi: 1016/j.eti.2021.101822.
  3. Russell JN, Yost CK. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere. 2021;263:128177. doi: 1016/j.chemosphere.2020.128177.
  4. Çelekli A, Al-Nuaimi AI, Bozkurt H. Adsorption kinetic and isotherms of Reactive Red 120 on Moringa oleifera seed as an eco-friendly process. J Mol Struct. 2019;1195:168-78. doi: 1016/j.molstruc.2019.05.106.
  5. Elami D, Seyyedi K. Removing of carmoisine dye pollutant from contaminated waters by photocatalytic method using a thin film fixed bed reactor. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020;55(2):193-208. doi: 1080/10934529.2019.1673089.
  6. Tuerk J, Sayder B, Boergers A, Vitz H, Kiffmeyer TK, Kabasci S. Efficiency, costs and benefits of AOPs for removal of pharmaceuticals from the water cycle. Water Sci Technol. 2010;61(4):985-93. doi: 2166/wst.2010.004.
  7. Wei Z, Liu J, Shangguan W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chinese J Catal. 2020; 41:1440-1450. doi: 1016/S1872-2067(19)63448-0.
  8. Akbari MZ, Xu Y, Lu Z, Peng L. Review of antibiotics treatment by advance oxidation processes. Environm Adv. 2021;5:100111. doi: 1016/j.envadv.2021.100111.
  9. Chakraborty S, Roy M, Saha R. Cost-effective synthesis method of facile environment friendly SnO2 nanoparticle for efficient photocatalytic degradation of water contaminating compound. Water Sci Technol. 2020;81(3):508-17. doi: 2166/wst.2020.130.
  10. Bagheri F, Chaibakhsh N. Efficient visible-light photocatalytic ozonation for dye degradation using Fe2O3/MoS2 nanocomposite. Sep Sci Technol. 2021;56(17):3022-32. doi: 1080/01496395.2020.1861018.
  11. Roguai S, Djelloul A. Elaboration, characterization and applications of SnO2, 2 %Gd-SnO2 and 2 %Gd-9 %F-SnO2 thin films for the photocatalytic degradation of MB by USP method. Inorg Chem Commun. 2022;138:109308. doi: 1016/j.inoche.2022.109308.
  12. Alagarasi A, Rajalakshmi PU, Shanthi K, Selvam P. Solar-light driven photocatalytic activity of mesoporous nanocrystalline TiO2, SnO2, and TiO2-SnO2 Mater Today Sustain. 2019;5:100016. doi: 10.1016/j.mtsust.2019.100016.
  13. Tammina SK, Mandal BK, Kadiyala NK. Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 Environ Nanotechnol Monit Manag. 2018;10:339-50. doi: 10.1016/j.enmm.2018.07.006.
  14. Costa LN, Nobre FX, Lobo AO, Elias de Matos JM. Photodegradation of ciprofloxacin using Z-scheme TiO2/SnO2 nanostructures as photocatalyst. Environ Nanotechnol Monit Manag. 2021;16:100466. doi: 1016/j.enmm.2021.100466.
  15. Asgari E, Esrafili A, Jonidi Jafari A, Rezaei Kalantary R, Farzadkia M. Synthesis of TiO2/polyaniline photocatalytic nanocomposite and its effects on degradation of metronidazole in aqueous solutions under UV and visible light radiation. Desalin Water Treat. 2019;161:228-42. doi: 5004/dwt.2019.24291.
  16. Faraji M, Najafi Moghadam P, Hasanzadeh R. Fabrication of binder-free polyaniline grafted multiwalled carbon nanotube/TiO2 nanotubes/Ti as a novel energy storage electrode for supercapacitor applications. Chem Eng J. 2016;304:841-51. doi: 1016/j.cej.2016.07.034.
  17. Li J, Peng T, Zhang Y, Zhou C, Zhu A. Polyaniline modified SnO2 nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Sep Purif Technol. 2018;201:120-9. doi: 1016/j.seppur.2018.03.010.
  18. Sayed MA, Ahmed MA, El-Shahat MF, El-Sewify IM. Mesoporous polyaniline/SnO2 nanospheres for enhanced photocatalytic degradation of bio-staining fluorescent dye from an aqueous environment. Inorg Chem Commun. 2022; 139:109326. doi:1016/j.inoche.2022.109326.
  19. Sandhya J, Kalaiselvam S. UV responsive quercetin derived and functionalized CuO/ZnO nanocomposite in ameliorating photocatalytic degradation of rhodamine B dye and enhanced biocidal activity against selected pathogenic strains. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56(8):835-48. doi: 1080/10934529.2021.1930770.
  20. Arora R. Nanocomposite polyaniline for environmental and energy applications. Mater Today Proc. 2021;44:633-6. doi: 1016/j.matpr.2020.10.603.
  21. Zia J, Riaz U. Photocatalytic degradation of water pollutants using conducting polymer-based nanohybrids: a review on recent trends and future prospects. J Mol Liq. 2021;340:117162. doi: 1016/j.molliq.2021.117162.
  22. Karpuraranjith M, Thambidurai S. Design and synthesis of graphene-SnO2 particles architecture with polyaniline and their better photodegradation performance. Synth Met. 2017;229:100-11. doi: 1016/j.synthmet.2017.02.017.
  23. Swati, Saini M, Anupama, Shukla R. Investigation of structural, thermal, and electrical properties of magnesium substituted cobalt ferrite reinforced polyaniline nanocomposites. Ceram Int. 2021;47(23):33835-42. doi: 1016/j.ceramint.2021.08.295.
  24. National Center for Biotechnology Information. PubChem Compound Summary for CID 5362065, Cefixime. 2022. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cefixime.
  25. Majumdar S, Devi PS. Synthesis of SnO2 nanoparticles using ultrasonication. AIP Conf Proc. 2010;1276(1):1-7. doi: 1063/1.3504298.
  26. Silva ALC, Ugucioni JC, Correa S, Ardisson JD, Macedo WAA, Silva JP, et al. Synthesis and characterization of nanocomposites consisting of polyaniline, chitosan and tin dioxide. Mater Chem Phys. 2018;216:402-12. doi: 1016/j.matchemphys.2018.06.025.
  27. Afshar Moghaddam M, Seyyedi K. Optimization of the Sunset Yellow dye removal by electrocoagulation using a response surface method. Water Sci Technol. 2022;85(1):206-19. doi: 2166/wst.2021.500.
  28. Senthilkumar S, Rajendran A. Synthesis, characterization and electrical properties of nano metal and metal-oxide doped with conducting polymer composites by in-situ chemical polymerization. MOJ Polym Sci. 2017;1(6):192-5. doi: 15406/mojps.2017.01.00031.
  29. Mostafaei A, Zolriasatein A. Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci. 2012;22(4):273-80. doi: 1016/j.pnsc.2012.07.002.
  30. Zhang Y, Zhao YG, Maqbool F, Hu Y. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: influence of water matrix components, processes optimization and application: a review. J Water Process Eng. 2022;45:102496. doi: 1016/j.jwpe.2021.102496 .
  31. Zhao Y, Ji C, Wang Y, Liang X, Fan J. Green and efficient degradation of cefixime by 3D flower-like BiOBr: performance and degradation pathway. Colloids Surf A Physicochem Eng Asp. 2022;635:128024. doi: 1016/j.colsurfa.2021.128024.