Assessment of Groundwater Quality in the Jajrood River Basin, Tehran, Iran: A Coupled Physicochemical and Hydrogeochemical Study

Document Type : Original Article

Authors

1 Department of Environmental Health Engineering, Faculty of Public Health and Biomedical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

2 Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

10.32598/JAEHR.9.3.1221

Abstract

Background: The physicochemical composition of groundwater is affected by the quantity and quality of surrounding aquifers which are in turn recharging from adjacent river waters.
Methods: In the present study, 20 surface and 16 groundwater samples were collected in pre- and post-monsoon season from the Jajrood River basin, Tehran, Iran. The samples were analyzed for 18 physicochemical water quality characteristics to assess the river and groundwater qualities. Hydrogeochemical analyses of groundwater samples were also performed to determine the Water Quality Index (WQI) for drinking and evaluate factors governing the water quality characteristic in the study area. Accordingly, the Piper diagram and Gibbs and Chadha plots were drawn to assess seasonal variations in hydrochemical facies and processes in the basin. Subsurface soil samples were also examined with respect to the structure, elemental composition, and multi-elemental trace analysis.
Results: Results showed the abundance of major ions in the order of Ca+2 >Na+>Mg+2>K+ for cations and HCO3- >SO42- >Cl- >NO3- >F- for anions. In general, all drinking groundwater samples met WHO permissible limits except for Chemical Oxygen Demand (COD) and HCO3-. Moreover, the water is categorized as Ca-Mg-HCO3 type. Subsurface soil analyses demonstrated quartz and calcium carbonate as the main phases of soil structure, suggesting the enrichment of groundwater with temporary hardness.
Conclusion: Overall, the groundwater quality was suitable for drinking and agricultural activities.

Keywords

Main Subjects


  1. Choubin B, Rahmati O, Soleimani F, Alilou H, Moradi E, Alamdari N. Regional groundwater potential analysis using classification and regression trees. In: Pourghasemi HR, Gokceoglu C, editors. Spatial Modeling in GIS and R for Earth an Environmental Sciences. Amsterdam: Elsevier; 2019. pp. 485-498. [DOI:10.1016/B978-0-12-815226-3.00022-3]
  2. Adimalla N, Wu J. Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Hum Ecol Risk Assess. 2019; 25(1-2):191-216. [DOI:10.1080/10807039.2018.1546550]
  3. Kazi T, Arain MB, Jamali MK, Jalbani N, Afridi HI, Sarfraz RA, et al. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol Environ Saf. 2009; 72(2):301-9. [DOI:10.1016/j.ecoenv.2008.02.024][PMID]
  4. Zhou Y, Li P, Xue L, Dong Z, Li D. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry. 2020; 80(4):125609. [DOI:10.1016/j.chemer.2020.125609]
  5. Subramani T, Rajmohan N, Elango L. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environ Monit Assess. 2010; 162(1-4):123-37. [DOI:10.1007/s10661-009-0781-4][PMID]
  6. Matthess G. The properties of ground-water. Hoboken: Wiley; 1982. https://books.google.com/books?id=Nt9RAAAAMAAJ&q
  7. Jarsjö J, Andersson-Sköld Y, Fröberg M, Pietroń J, Borgström R, Löv A, et al. Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level. Sci Total Environ. 2020; 712:135560.[DOI:10.1016/j.scitotenv.2019.135560][PMID]
  8. Edmunds WM, Smedley PL. Residence time indicators in groundwater: The East Midlands Triassic sandstone aquifer. J Appl Geochem. 2000; 15(6):737-52. [DOI:10.1016/S0883-2927(99)00079-7]
  9. Thilagavathi R, Chidambaram S, Prasanna MV, Thivya C, Singaraja C. A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Appl Water Sci. 2012; 2(4):253-69. [DOI:10.1007/s13201-012-0045-2]
  10. Piper AM. A graphic procedure in the geochemical interpretation of water‐ Eos Trans AGU. 1944; 25(6):914-28.[DOI:10.1029/TR025i006p00914]
  11. Durov S. Natural waters and graphic representation of their composition. Dokl Akad Nauk SSSR. 1948; 59(3):87-90. https://scholar.google.com/scholar?hl=fa&as_sdt=0%2C5&q=Natural+waters+and+graphic+representation+of+their+composition&btnG=
  12. Chadha DK. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J. 1999; 7(5):431-9. [DOI:10.1007/s100400050216]
  13. Kura NU, Ramli MF, Sulaiman WNA, Ibrahim S, Aris AZ. An overview of groundwater chemistry studies in Malaysia. Environ Sci Pollut Res Int. 2018; 25(8):7231-49. [DOI:10.1007/s11356-015-5957-6][PMID]
  14. Karmegam U, Chidambaram S, Prasanna MV, Sasidhar P, Manikandan S, Johnsonbabu G, et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model. Chin J Geochem. 2011; 30(4):490. [DOI:10.1007/s11631-011-0533-3]
  15. Prasanna MV, Chidambaram S, Hameed AS, Srinivasamoorthy K. Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu, India. J Earth Syst Sci. 2011; 120(1):85-98. [DOI:10.1007/s12040-011-0004-6]
  16. Uddin G, Nash S, Olbert AI. A review of water quality index models and their use for assessing surface water quality. Ecol Indic. 2021; 122:107218. [DOI:10.1016/j.ecolind.2020.107218]
  17. Elsayed Gabr M, Soussa H, Fattouh E. Groundwater quality evaluation for drinking and irrigation uses in Dayrout city Upper Egypt. Ain Shams Eng J. 2021; 12(1):327-40. [DOI:10.1016/j.asej.2020.05.010]
  18. Chaudhary V, Sharma M, Yadav BS. Assessment of water fluoride toxicity levels in northwest Rajasthan, India. Fluoride. 2008; 41(3):212-5. https://scholar.google.com/scholar?hl=fa&as_sdt=0%2C5&q=&btnG=
  19. Ghassemi Dehnavi A. Hydrochemical assessment of groundwater using statistical methods and ionic ratios in Aliguodarz, Lorestan, west of Iran. J Adv Environ Health Res. 2018; 6(3):193-201. [DOI:10.22102/jaehr.2018.137767.1091]
  20. Sahu P, Sikdar P. Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ Geol. 2008; 55(4):823-35. [DOI:10.1007/s00254-007-1034-x]
  21. Varol S, Davraz A. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: A case study of the Tefenni plain (Burdur/Turkey). Environ Earth Sci. 2015; 73(4):1725-44. [DOI:10.1007/s12665-014-3531-z]
  22. Kshetrimayum KS, Laishram P. Assessment of surface water and groundwater interaction using hydrogeology, hydrochemical and isotopic constituents in the Imphal river basin, Northeast India. Groundw Sustain Dev. 2020; 11:100391. [DOI:10.1016/j.gsd.2020.100391]
  23. Gaikwad SK, Kadam AK, Ramgir RR, Kashikar AS, Wagh VM, Kandekar AM, et al. Assessment of the groundwater geochemistry from a part of west coast of India using statistical methods and water quality index. HydroResearch. 2020; 3:48-60. [DOI:10.1016/j.hydres.2020.04.001]
  24. Yang J, Yu Z, Yi P, Frape SK, Gong M, Zhang Y. Evaluation of surface water and groundwater interactions in the upstream of Kui river and Yunlong lake, Xuzhou, China. J Hydrol (Amst). 2020; 583:124549. [DOI:10.1016/j.jhydrol.2020.124549]
  25. Souri L, Rabani M, Sayadi M. [Evaluation factors affecting of vulner ability the quality of groundwater and drinking wells in Pardis (Persian)]. [MSC. thesis]. Tehran: Tehran University;
  26. World Health Organization (WHO). Guidelines for drinking-water quality. Geneva: World Health Organization; 2008. https://www.who.int/water_sanitation_health/dwq/fulltext.pdf
  27. Ramkumar T, Venkatramanan S, Anithamary I, Ibrahim SMS. Evaluation of hydrogeochemical parameters and quality assessment of the groundwater in Kottur blocks, Tiruvarur district, Tamilnadu, India. Arab J Geosci. 2013; 6(1):101-8.[DOI:10.1007/s12517-011-0327-2]
  28. Rao NS, Rao PS, Reddy GV, Nagamani M, Vidyasagar G, Satyanarayana NLVV. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess. 2012; 184(8):5189-214. [DOI:10.1007/s10661-011-2333-y][PMID]
  29. Davis SN, De Wiest RJM. Hydrogeology. Vol. 463. New York: John Wiley & Sons, 1966. https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1480950
  30. Ouyang Y, Nkedi-Kizza P, Wu QT, Shinde D, Huang CH. Assessment of seasonal variations in surface water quality. Water Res. 2006; 40(20):3800-10. [DOI:10.1016/j.watres.2006.08.030][PMID]
  31. Kim K, Koo MH, Moon SH, Yum BW, Lee KS. Hydrochemistry of groundwaters in a spa area of Korea: An implication for water quality degradation by intensive pumping. Hydrol Process. 2005; 19(2):493-505. [DOI:10.1002/hyp.5551]
  32. Chaudhary V, Kumar M, Sharma M, Yadav BS. Fluoride, boron and nitrate toxicity in ground water of northwest Rajasthan, India. Environ Monit Assess. 2010; 161(1-4):343-8. [DOI:10.1007/s10661-009-0750-y][PMID]
  33. Economic and Social Commission for Western Asia. Inventory of shared water resources in western Asia. New York: United Nations; 2013. https://books.google.com/books?id=Qb-CxgEACAAJ&dq
  34. Marangi H, Azimzadeh AM, Nabatian GH, Kouhestani H, Mohammadi Niaei R. [Application of mineralogy and geochemistry of trace elements in determining the phases of carrying strategic elements in Angouran Zn-Pb deposit, SW Zanjan (Persian)]. Adv Appl Geol. 2017; 7(3):95-113. [DOI:10.22055/AAG.2017.13937]
  35. Veyseh S, Niazi A, GHasemi J. [Investigation of soil samples distribution in Bahabad area by ICP-MS, ICP-OES and geochemometrics analysis (Persian)]. J Geosci. 2017; 26(101):245-54. https://www.gsjournal.ir/article_41121.html?lang=en
  36. Krouse HR, Mayer B. Sulphur and oxygen isotopes in sulphate. In: Cook PG, Herczeg AL, editors. Environmental Tracers in Subsurface Hydrology. New York: Springer; 2000. pp. 195-231. [DOI:10.1007/978-1-4615-4557-6_7]
  37. Molekoa MD, Avtar R, Kumar P, Minh HVT, Kurniawan TA. Hydrogeochemical assessment of groundwater quality of Mokopane area, Limpopo, South Africa using statistical approach. Water. 2019; 11(9):1891. [DOI:10.3390/w11091891]
  38. Sidle W, Roose DL, Shanklin DR. Isotopic evidence for naturally occurring sulfate pollution of ponds in the Kankakee River Basin, Illinois-Indiana. J Environ Qual. 2000; 29(5):1594-1603. [DOI:10.2134/jeq2000.00472425002900050029x]
  39. Appelo CAJ, Postma D. Geochemistry, groundwater and pollution. 2nd Amsterdam: A.A. Balkema; 2005.https://www.google.com/books/edition/Geochemistry_Groundwater_and_Pollution_S/F2WWnQAACAAJ?hl=en
  40. Ayenew T. The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environ Geol. 2008; 54(6):1313-24. [DOI:10.1007/s00254-007-0914-4]
  41. Gomółka E, Szaynok A. [Chemia wody i powietrza (Polish)]. Warsaw: Oficyna Wydawnicza Politechniki Wrocławskiej; 1997. https://fbc.pionier.net.pl/details/nnzzfsz
  42. Pulikowski K. [Zanieczyszczenia obszarowe w malych zlewniach rolniczych (Polish)]. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu. Rozprawy. 2004; (211):1-137. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-b90c5ca7-7925-40f4-8a20-dab63c7ada5c
  43. Orzepowski W, Kowalczyk T, Pęczkowski G, Szymańska-Pulikowska A. [Zawartość wybranych składników w wodach małych zbiorników na terenach wiejskich (Polish)]. Gospodarka Wodna. 2008; (8):313-7.‏http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPP1-0084-0066
  44. Şener Ş, Şener E, Davraz A. Evaluation of water quality using Water Quality Index (WQI) method and GIS in Aksu River (SW-Turkey). Sci Total Environ. 2017; 584-584:131-44. [DOI:10.1016/j.scitotenv.2017.01.102][PMID]
  45. Amneera WA, Najib NWAZ, Yusof SRM, Ragunathan S. Water quality index of Perlis river, Malaysia. Int J Civ Environ Eng. 2013; 13(2):1-6. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.654.9549&rep=rep1&type=pdf
  46. Appelo CA, Postma D. Geochemistry, groundwater and pollution. Florida: CRC Press; 2004. [DOI:10.1201/9781439833544]
  47. Mwabi JK, Mamba BB, Momba MMB. Removal of waterborne bacteria from surface water and groundwater by cost-effective Household Water Treatment Systems (HWTS): A sustainable solution for improving water quality in rural communities of Africa. Water SA. 2013; 39(4):445-56. [DOI:10.4314/wsa.v39i4.2]
  48. Razmkhah H, Abrishamchi A, Torkian A. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran). J Environ Manage. 2010; 91(4):852-60. [DOI:10.1016/j.jenvman.2009.11.001][PMID]
  49. Rao YR, Milne JE, Marvin CH. Hydrodynamics and water quality in western Lake Ontario. J Great Lakes Res. 2012; 38(4):91-8. [DOI:10.1016/j.jglr.2012.04.001]
  50. Selvakumar S, Ramkumar K, Chandrasekar N, Magesh NS, Kaliraj S. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Appl Water Sci. 2017; 7:411-20. [DOI:10.1007/s13201-014-0256-9]
  51. Wang P, Yu J, Zhang Y, Liu C. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. J Hydrol. 2013; 476:72-86. [DOI:10.1016/j.jhydrol.2012.10.049]
  52. Eaton FM. Significance of carbonate in irrigation water. Soil Sci. 1950; 69(2):123-34. [DOI:10.1097/00010694-195002000-00004]
  53. Abdel-Satar AM, Al-Khabbas MH, Alahmad WR, Yousef WM, Alsomadi RH, Iqbal T. Quality assessment of groundwater and agricultural soil in Hail region, Saudi Arabia. Egypt J Aquat Res. 2017; 43(1):55-64. [DOI:10.1016/j.ejar.2016.12.004]
  54. Sudhakar A, Narsimha A. Suitability and assessment of groundwater for irrigation purpose: A case study of Kushaiguda area, Ranga Reddy district, Andhra Pradesh, India. Adv Appl Sci Re. 2013; 4(6):75-81. https://www.imedpub.com/abstract/suitability-and-assessment-of-groundwater-for-irrigation-purposerna-case-study-of-kushaiguda-area-ranga-reddy-district-andhra-pradesh-india-15671.html
  55. Ravikumar P, Somashekar RK. Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India. Appl Water Sci. 2017; 7(2):745-55. [DOI:10.1007/s13201-015-0287-x]
  56. Mechal A, Birk S, Dietzel M, Leis A, Winkler G, Mogessie A, et al. Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): A multi-proxy approach. Hydrogeol J. 2017; 25:519-38. [DOI:10.1007/s10040-016-1489-5]
  57. Katz BG, Coplen TB, Bullen TD, Davis JH. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Groundwater. 1997; 35(6):1014-28. [DOI:10.1111/j.1745-6584.1997.tb00174.x]
  58. Gibbs RJ. Mechanisms controlling world water chemistry. Science. 1970; 170(3962):1088-90. [DOI:10.1126/science.170.3962.1088][PMID]
  59. Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, et al. Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Expos Health. 2016; 8(3):331-48. [DOI:10.1007/s12403-016-0193-y]
  60. Loh YSA, Akurugu BA, Manu E, Aliou AS. Assessment of groundwater quality and the main controls on its hydrochemistry in some Voltaian and basement aquifers, northern Ghana. Groundw Sustain Dev. 2020; 10:100296. [DOI:10.1016/j.gsd.2019.100296]
  61. Soodan RK, Pakade YB, Nagpal A, Katnoria JK. Analytical techniques for estimation of heavy metals in soil ecosystem: A tabulated review. Talanta. 2014; 125:405-10. [DOI:10.1016/j.talanta.2014.02.033][PMID]
  62. Reddy VR, Reddy MS, Rout SK. Groundwater governance: A tale of three participatory models in Andhra Pradesh, India. Water Altern. 2014; 7(2):275-97. http://dlc.dlib.indiana.edu/dlc/bitstream/handle/10535/9522/plugin-file-1.pdf?sequence=1