Removal of Ni(II) and Cr(VI) Ions From Electroplating Wastewater Using Ferrous Sulfate

Document Type : Original Article

Authors

1 Department of Environment, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

2 Department of Chemistry, Foculty of Basic Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.

10.32598/JAEHR.9.2.1203

Abstract

Background: In this study, the ferrous sulfate was used to remove Cr(VI) and Ni(II) ions from a real Ni-Cr plating industry wastewater.
Methods: This is an applied study. The type of sampling was composite by three 5 L containers. Wastewater chemical and physical characteristics were measured in accordance with the standard methods. The concentration of un-removed metal ions was estimated by ICP-OES. The Jar test was used to carry out the chemical coagulation experiment. The results indicated that the rate of removal depended on the pH of 1.5-11, the diverse contact time of 30-120 min, and the coagulant measurement ranging from 0.5-2 g/l.
Results: The optimum removal of Cr(VI) ions was observed at a pH of 7 up to 83.88% in 0.5 g/l of coagulant for 40 min. While the optimum removal of Ni(II) ions was found at a pH of 5 up to 56.33 % in 0.5 g/l of coagulant for 40 min. The scanning electron microscopy results revealed the difference between the coagulant surface while coagulation. Also, the Energy-Dispersive X-ray spectroscopy (EDX) analysis showed the presence of Cr(VI) and Ni(II) ions on the surface of the ferrous sulfate after coagulation. 
Conclusion: Ultimately, the results indicated that ferrous sulfate could be an operative chemical coagulant to remove Cr(VI) and Ni(II) ions from the plating industry wastewater, especially for Cr(VI) particles. The results of this study can be a useful guide to the real plating industry wastewater treatment operators.

Keywords

Main Subjects


  1. Sobhanardakani S, Tayebi L, Hosseini SV. Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environ Sci Pollut Res. 2018; 25(3):2664-71. [DOI:10.1007/s11356-017-0705-8] [PMID]
  2. Mohammadi MJ, Yari AR, Saghazadeh M, Sobhanardakani S, Geravandi S, Afkar A, et al. A health risk assessment of heavy metals in people consuming Sohan in Qom, Iran. Toxin Rev. 2018; 37(4):278-86. [DOI:10.1080/15569543.2017.1362655]
  3. Samadi MT, Saghi MH, Rahmani A, Hasanvand J, Rahimi S, Shirzad Syboney M. Hamadan landfill leachate treatment by coagulation-flocculation precess. J Environ Health Sci Eng. 2010; 7(3):253-8. https://ijehse.tums.ac.ir/index.php/jehse/article/view/253
  4. Sobhanardakani S, Jafari A, Zandipak R, Meidanchi AR. Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Saf Environ Prot. 2018; 120:348-57. [DOI:10.1016/j.psep.2018.10.002]
  5. Tripathi A, Ranjan MR. Heavy metal removal from wastewater using low cost adsorbents. J Bioremediat Biodegrad. 2015; 6(6):315. [DOI:10.4172/2155-6199.1000315]
  6. Rezaei Raja O, Sobhanardakani S, Cheraghi M. Health risk assessment of citrus contaminated with heavy metals in Hamedan city, potential risk of Al and Cu. Environ Health Eng Manag J. 2016; 3(3):131-5. [DOI:10.15171/EHEM.2016.11]
  7. Ighere JO, Honjoya K, Chawla RC. Using ferrous ion for the reductive degradation of hexavalent chromium. Adv Chem Eng Sci. 2015; 5(1):15-22. [DOI:10.4236/aces.2015.51002]
  8. Akar Sh, Lorestani B, Sobhanardakani S, Cheraghi M, Moradi O. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. Environ Monit Assess. 2019; 191(6):373. [DOI:10.1007/s10661-019-7479-z][PMID]
  9. Sobhanardakani S. Ecological and human health risk assessment of heavy metal content of atmospheric dry deposition, a case study: Kermanshah, Iran. Biol Trace Elem Res. 2019; 187(2):602-10. [DOI:10.1007/s12011-018-1383-1][PMID]
  10. Dermentzis K, Valsamidou E, Lazaridou A, Kokkinos NC. Nickel removal from wastewater by electrocoagulation with aluminum electrodes. J Eng Sci Technol Rev. 2011; 4(2):188-92. [DOI:10.25103/jestr.042.12]
  11. Yari AR, Shirzad Siboni M, Hashemi S, Alizadeh M. Removal of heavy metals from aqueous solutions by natural adsorbents (a review). Arch Hyg Sci. 2013; 2(3):114-24. https://www.sid.ir/en/journal/ViewPaper.aspx?id=441303
  12. Sabet Aghlidi P, Cheraghi M, Lorestani B, Sobhanardakani S, Merrikhpour H. Analysis, spatial distribution and ecological risk assessment of arsenic and some heavy metals of agricultural soils, case study: South of Iran. J Environ Health Sci Eng. 2020; 18(2):665-76. [DOI:10.1007/s40201-020-00492-x][PMID]
  13. Rahbar MS, Alipour E, Sedighi RE. Color removal from industrial wastewater with a novel coagulant flocculant formulation. Int J Environ Sci Technol. 2006; 3(1):79-88. [DOI:10.1007/BF03325910]
  14. Ukiwe LN, Ibeneme SI, Duru CE, Okolue BN, Onyedika GO, Nweze CA. Chemical and electro-coagulation techniques in coagulation-floccculation in water and wastewater treatment - A review. J Adv Chem. 2014; 9(3):1988-99. [DOI:10.24297/jac.v9i3.1006]
  15. Balik ÖY, Aydin S. Coagulation/flocculation optimization and sludge production for pre-treatment of paint industry wastewater. Desalination Water Treat. 2016; 57(27):12692-9. [DOI:10.1080/19443994.2015.1051125]
  16. Jindal A, Sharma SK, Jyothi PM. Color and COD removal in textile effluents using coagulation flocc Int J Innov Res Sci Eng Technol. 2016; 5(6):10233-9. http://www.ijirset.com/upload/2016/june/139_Colour.pdf
  17. Amuda OS, Amoo IA, Ipinmoroti KO, Ajayi OO. Coagulation/flocculation process in the removal of trace metals present in industrial wastewate J Appl Sci Environ Manage. 2006; 10(3):159-62. [DOI:10.4314/jasem.v10i3.17339]
  18. Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage. 2012; 93(1):154-68. [DOI:10.1016/j.jenvman.2011.09.012][PMID]
  19. Kumar SS, Kumar V, Kumar R, Malyan SK, Bishnoi NR. Ferrous sulfate as an in-situ anodic coagulant for enhanced bioelectricity generation and COD removal from landfill leachate. Energy. 2019; 176:570-81. [DOI:10.1016/j.energy.2019.04.014]
  20. Parmar KA, Prajapati S, Patel R, Dabhi Y. Effective use of ferrous sulfate and alum as a coagulation in treatment of dairy industry wastewater. ARPN J Eng Appl Sci. 2011; 6(9):42-5. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1075.1132&rep=rep1&type=pdf
  21. Qin XY, Chai MR, Ju DY, Hamamoto O. Investigation of plating wasterwater treatment technology for chromium, nickel and copper. IOP Conf Ser Earth Environ Sci. 2018; 191:012006. [DOI:10.1088/1755-1315/191/1/012006]
  22. Aktas TS, Takeda F, Maruo Ch, Fujibayashi M, Nishimura O. Comparison of four kinds of coagulants for removal of picophytoplankton. Desalination Water Treat. 2013; 51(16-18):3547-57. [DOI:10.1080/19443994.2012.750777]
  23. Bui HM, Duong HTG. Coagulation for treatment of swine slaughterhouse wastewater. GeoSci Eng. 2017; 63(1):15-21. [DOI:10.1515/gse-2017-0003]
  24. Angadi SS, Shetty R, Manjunath NT. Coagulation study to remove heavy metals from leachate. Int J Innov Res Sci Eng Technol. 2015; 4(6):4095-9. [DOI:10.15680/IJI2015.0406037]
  25. Prakash NB, Sockan V, Jayakaran P. Waste water treatment by coagulation and flocculation. Int J Eng Sci Innov Technol. 2014; 3(2):479-84. https://www.ijesit.com/Volume%203/Issue%202/IJESIT201402_61.pdf
  26. Guan X, Dong H, Ma J, Irene IMC. Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate: Batch uptake behavior. J Environ Sci. 2011; 23(3):372-80. [DOI:10.1016/S1001-0742(10)60420-2]
  27. Katsoyannis IA, Xanthopoulou M, Zouboulis AI. Cr(VI) femoval from ground waters by ferrous iron redox-assisted coagulation in a continuous treatment unit comprising a plug flow pipe reactor and downflow sand filtration. Appl Sci. 2020; 10(3):802. [DOI:10.3390/app10030802]
  28. Vlachou M, Hahiadakis J, Gidarakos E. Effect of various parameters in removing Cr and Ni from model wastewater by using electrocoagulation. Glob NEST J. 2013; 15(4):494-503. [DOI:10.30955/gnj.001077]
  29. Irfan M, Butt T, Imtiaz N, Abbas N, Khan RA, Shafique A. The removal of COD, TSS and color of black liquor by coagulation-flocculation process at optimized pH, settling and dosing rate. Arabian J Chem. 2017; 10(Suppl 2):S2307-18. [DOI:10.1016/j.arabjc.2013.08.007]
  30. Aregawi BH, Mengistie AA. Removal of Ni(II) from aqueous solution using leaf, bark and seed of Moringa stenopetala adsorbents. Bull Chem Soc Ethiop. 2013; 27(1):35-47. [DOI:10.4314/bcse.v27i1.4]
  31. Wang LK, Hung YT, Lo HH, Yapijakis C. Handbook of industrial and hazardous wastes treatment. 2nd New York: CRC Press; 2004. https://books.google.com/books?id=V839DwAAQBAJ&dq
  32. Wolowiec M, Komorowska-Kaufman M, Pruss A, Rzepa G, Bajda T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A revie Minerals. 2019; 9(8):487. [DOI:10.3390/min9080487]