Used Batteries in the Municipal Solid Waste Stream: Management of the Challenges and Heavy Metal Contents

Document Type : Original Article

Authors

1 Department of Environmental Health Engineering, Health and Environment Research Center, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran.

2 Department of Environmental Health Engineering, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran.

3 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.

4 Department of Environmental Pollution, Tabriz Municipality, Tabriz, Iran.

10.32598/JAEHR.9.2.1176

Abstract

Background: Hazardous materials, such as used batteries contain heavy metals and enter the solid waste stream, ending up in landfills. The present study was done to determine the amount of used batteries in Iran and their heavy metal contents in the batteries entering the landfill site in Tabriz. 
Methods: A questionnaire was applied to assess the current management condition of the used batteries in Tabriz and Ardabil as the representative cities of the entire country. The heavy metal content of 15 AA-sized batteries was determined by inductively coupled plasma. 
Results: Our findings showed that 14.7% of the used batteries in Iran have been imported, and approximately 76% and 24% of the batteries analyzed at the landfill site were AA-sized and cellphone batteries, respectively. In 60% of the studied batteries, the total heavy metal content was less than 100 mg/kg.
Conclusion: The results of this study could be a useful reference for global and local policymakers in developing effective regulations for the use of cleaner materials in the battery industry and controlling the used batteries from their generation to the end of the battery life.

Keywords

Main Subjects


  1. Qu J, Feng Y, Zhang Q, Cong Q, Luo Ch, Yuan X. A new insight of recycling of spent Zn-Mn alkaline batteries: Synthesis of ZnxMn1-xO nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them. J Alloys Compd. 2015; 622:703-7. [DOI:10.1016/j.jallcom.2014.10.166]
  2. Terazono A, Oguchi M, Iino Sh, Mogi S. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety. Waste Manag. 2015; 39:246-57. [DOI:10.1016/j.wasman.2015.01.038][PMID]
  3. Song J, Yan W, Cao H, Song Q, Ding H, Lv Zh, et al. Material flow analysis on critical raw materials of lithium-ion batteries in China. J Clean Prod. 2019; 215:570-81. [DOI:10.1016/j.jclepro.2019.01.081]
  4. Badawy SM, Nayl AA, El Khashab RA, El-Khateeb MA. Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin. J Mater Cycles Waste Manag. 2014; 16(4):739-46. [DOI:10.1007/s10163-013-0213-y]
  5. Ebin B, Petranikova M, Ekberg Ch. Physical separation, mechanical enrichment and recycling-oriented characterization of spent NiMH batteries. J Mater Cycles Waste Manag. 2018; 20(4):2018-27. [DOI:10.1007/s10163-018-0751-4]
  6. Zueva SB, Macolino P, Manciulea AL, Vegliò F. Polyamine flocculation applied to household batteries recycling. J Mater Cycles Waste Manag. 2015; 17(3):504-12. [DOI:10.1007/s10163-014-0265-7]
  7. Mantuano DP, Dorella G, Elias RCA, Mansur MB. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272. J Power Sources. 2006; 159(2):1510-18. [DOI:10.1016/j.jpowsour.2005.12.056]
  8. Kim MJ, Seo JY, Choi YS, Kim GH. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manag. 2016; 51:168-73. [DOI:10.1016/j.wasman.2015.11.001][PMID]
  9. Song X, Hu Sh, Chen D, Zhu B. Estimation of waste battery generation and analysis of the waste battery recycling system in China. J Ind Ecol. 2017; 21(1):57-69. [DOI:10.1111/jiec.12407]
  10. Karnchanawong S, Limpiteeprakan P. Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste. Waste Manag. 2009; 29(2):550-8. [DOI:10.1016/j.wasman.2008.03.018][PMID]
  11. Barrett HA, Ferraro A, Burnette Ch, Meyer A, Krekeler MPS. An investigation of heavy metal content from disposable batteries of non-U.S. origin from Butler County, Ohio: An environmental assessment of a segment of a waste stream. J Power Sources. 2012; 206:414-20. [DOI:10.1016/j.jpowsour.2012.01.008]
  12. Provazi K, Campos BA, Espinosa DCR, Tenório JAS. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques. Waste Manag. 2011; 31(1):59-64. [DOI:10.1016/j.wasman.2010.08.021][PMID]
  13. Gallegos MV, Falco LR, Peluso MA, Sambeth JE, Thomas HJ. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination. Waste Manag. 2013; 33(6):1483-90. [DOI:10.1016/j.wasman.2013.03.006][PMID]
  14. Xi G, Yang L, Lu M. Study on preparation of nanocrystalline ferrites using spent alkaline Zn-Mn batteries. Mater Lett. 2006; 60(29-30):3582-5. [DOI:10.1016/j.matlet.2006.03.064]
  15. Guevara-García JA, Montiel-Corona V. Used battery collection in central Mexico: Metal content, legislative/management situation and statistical analysis. J Environ Manage. 2012; 95 Suppl:S154-7. [DOI:10.1016/j.jenvman.2010.09.019][PMID]
  16. Huang Ch, Zeng G, Huang D, Lai C, Xu P, Zhang Ch, et al. Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting. Bioresour Technol. 2017; 243:294-303. [DOI:10.1016/j.biortech.2017.06.124][PMID]
  17. European Commission. Batteries and accumulators [Internet]. 2016 [Updated 2016]. Available from: http://ec.europa.eu/environment/waste/batteries/
  18. Sayilgan E, Kukrer T, Civelekoglu G, Ferella F, Akcil A, Veglio F, et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. H 2009; 97(3-4):158-66. [DOI:10.1016/j.hydromet.2009.02.008]
  19. Sun Zh, Cao H, Zhang X, Lin X, Zheng W, Cao G, et al. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. Waste Manag. 2017; 64:190- [DOI:10.1016/j.wasman.2017.03.007][PMID]
  20. Zhang X, Xie Y, Lin X, Li H, Cao H. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J Mater Cycles Waste Manag. 2013; 15(4):420-30. [DOI:1007/s10163-013-0140-y]
  21. Aharoni I, Siebner H, Dahan O. Application of vadose-zone monitoring system for real-time characterization of leachate percolation in and under a municipal landfill. Waste Manag. 2017; 67:203-13. [DOI:10.1016/j.wasman.2017.05.012][PMID]
  22. Li Zh, Ma Z, van der Kuijp TJ, Yuan Z, Huang L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci Total Environ. 2014; 468-469:843-53. [DOI:10.1016/j.scitotenv.2013.08.090][PMID]
  23. Huang D, Deng R, Wan J, Zeng G, Xue W, Wen X, et al. Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: Accompanied with the change of available phosphorus and organic matters. J Hazard Mater. 2018; 348:109-16. [DOI:10.1016/j.jhazmat.2018.0024][PMID]
  24. Li YL, Wang J, Yue ZB, Tao W, Yang HB, Zhou YF, et al. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource. J Biosci Bioeng. 2017; 124(1):71-5. [DOI:10.1016/j.jbiosc.2017.02.009][PMID]
  25. Mishra H, Karmakar S, Kumar R, Kadambala P. A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner s Environ Sci Pollut Res Int. 2018; 25(3):2911-23. [DOI:10.1007/s11356-017-0717-4][PMID]
  26. Slack RJ, Gronow JR, Voulvoulis N. Household hazardous waste in municipal landfills: Contaminants in leachate. Sci Total Environ. 2005; 337(1-3):119-37. [DOI:10.1016/j.scitotenv.2004.07.002][PMID]
  27. Taghipour H, Amjad Z, Asghari Jafarabadi M, Gholampour A, Nowrouz P. Determining heavy metals in spent Compact Fluorescent Lamps (CFLs) and their waste management challenges: Some strategies for improving current condi Waste Manag. 2014; 34(7):1251-6. [DOI:10.1016/j.wasman.2014.03.010][PMID]
  28. United States Environmental Protection Agency. Method 3050B: Acid digestion of sediments, sludges, and soils [Internet]. 1996 [Updated 1996 December]. Available from: https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf
  29. Almeida MF, Xará SM, Delgado J, Costa CA. Characterization of spent AA household alkaline batteries. Waste Manag. 2006; 26(5):466-76. [DOI:10.1016/j.wasman.2005.04.005][PMID]
  30. European Union EUR-Lex & Legal Information Unit. Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC [Internet]. 2006 [Updated 2006 September 26]. Available from: https://eur-lex.europa.eu/eli/dir/2006/66/oj
  31. Ruffino B, Zanetti MC, Marini P. A mechanical pre-treatment process for the valorization of useful fractions from spent batteries. Resour Conserv Recycl. 2011; 55(3):309-15. [DOI:10.1016/j.resconrec.2010.10.002]
  32. Komilis D, Bandi D, Kakaronis G, Zouppouris G. The influence of spent household batteries to the organic fraction of municipal solid wastes during composting. Sci Total Environ. 2011; 409(13):2555-66. [DOI:10.1016/j.scitotenv.2011.02.044][PMID]
  33. Frank K, Tchobanoglous G. Handbook of solid waste management. New York: McGraw Hill Inc; 1994.
  34. Niza S, Santos E, Costa I, Ribeiro P, Ferrão P. Extended producer responsibility policy in Portugal: A strategy towards improving waste management performance. J Clean Prod. 2014; 64:277-87. [DOI:10.1016/j.jclepro.2013.07.037]
  35. Taghipour H, Nowrouz P, Asghari Jafarabadi M, Nazari J, Asl Hashemi A, Mosaferi M, et al. E-waste management challenges in Iran: Presenting some strategies for improvement of current conditions. Waste Manag Res. 2012; 30(11):1138-44. [DOI:10.1177/0734242X11420328][PMID]
  36. Zhao W. A study on the environmental policies of waste batteries in China [MSc. thesis]. Lund: Lund University; 2003. https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=1325150&fileOId=1325151
  37. Kim H, Jang YC, Hwang Y, Ko Y, Yun H. End-of-life batteries management and material flow analysis in South Korea. Front Environ Sci Eng. 2018; 12(3):3. [DOI:10.1007/s11783-018-1019-x]
  38. Rogulski Z, Czerwiński A. Used batteries collection and recycling in Poland. J Power Sources. 2006; 159(1):454-8. [DOI:10.1016/j.jpowsour.2006.02.034]